Calculation and Modeling of a Metalens for Detection of Fractional Order Vortices

IF 1 Q4 OPTICS
A. G. Nalimov, V. V. Kotlyar
{"title":"Calculation and Modeling of a Metalens for Detection of Fractional Order Vortices","authors":"A. G. Nalimov,&nbsp;V. V. Kotlyar","doi":"10.3103/S1060992X24700656","DOIUrl":null,"url":null,"abstract":"<p>A metalens for detection an incident field with initially a fractional topological charge in the range from –2 to 0 is considered in this work. The metalens is constructed utilizing a spiral zone plate with a topological charge of –1.5. A change in the topological charge of the focused incident beam is shown by simulation to lead to a displacement of its focal spot from the center on the optical axis and to a change in the intensity maximum value, which results in the change in the intensity on the optical axis by 6.9, the change from –0.6 to –1.5 of the topological charge of the incident beam was considered. The intensity at the focus on the optical axis is also affected by the rotation of the beam with a fractional topological charge. This makes it possible using the metalens to measure the tilt angle of the incident beam in the range from 0° to 110°.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2 supplement","pages":"S376 - S385"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A metalens for detection an incident field with initially a fractional topological charge in the range from –2 to 0 is considered in this work. The metalens is constructed utilizing a spiral zone plate with a topological charge of –1.5. A change in the topological charge of the focused incident beam is shown by simulation to lead to a displacement of its focal spot from the center on the optical axis and to a change in the intensity maximum value, which results in the change in the intensity on the optical axis by 6.9, the change from –0.6 to –1.5 of the topological charge of the incident beam was considered. The intensity at the focus on the optical axis is also affected by the rotation of the beam with a fractional topological charge. This makes it possible using the metalens to measure the tilt angle of the incident beam in the range from 0° to 110°.

Abstract Image

一种用于检测分数阶涡的超透镜的计算与建模
本文研究了一种用于探测初始拓扑电荷在-2到0范围内的分数阶入射场的超透镜。超构透镜是利用拓扑电荷为-1.5的螺旋带板构造的。仿真结果表明,聚焦入射光束的拓扑电荷发生变化,导致其焦点光斑偏离光轴中心,强度最大值发生变化,导致光轴上的强度变化6.9,考虑入射光束拓扑电荷从-0.6到-1.5的变化。光轴上焦点处的强度也受到带分数拓扑电荷的光束旋转的影响。这使得使用超透镜测量入射光束在0°到110°范围内的倾斜角成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信