{"title":"Common Topological Charge of a Superposition of Several Identical Off-Axis Vortex Beams with an Arbitrary Circularly Symmetric Transverse Shape","authors":"A. A. Kovalev, V. V. Kotlyar, A. G. Nalimov","doi":"10.3103/S1060992X24700577","DOIUrl":null,"url":null,"abstract":"<p>We investigate the common topological charge of a superposition of parallel identical vortex beams with an arbitrary transverse shape, either Laguerre–Gaussian beams or Bessel–Gaussian beams or some other vortex beams with rotationally symmetric intensity distribution. It is known that if all the beams in the superposition have the same phase then the common topological charge of the whole superposition equals the topological charge of each constituent beam <i>n</i>. We show that if the beams are located on a circle and their phases increase linearly along this circle so that the phase delay between the neighbor beams on the circle is 2π<i>p</i>/<i>N</i> with <i>N</i> being the number of beams and <i>p</i> being an integer number, then the common topological charge of the superposition is equal to <i>n</i> + <i>p</i>.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2 supplement","pages":"S285 - S294"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the common topological charge of a superposition of parallel identical vortex beams with an arbitrary transverse shape, either Laguerre–Gaussian beams or Bessel–Gaussian beams or some other vortex beams with rotationally symmetric intensity distribution. It is known that if all the beams in the superposition have the same phase then the common topological charge of the whole superposition equals the topological charge of each constituent beam n. We show that if the beams are located on a circle and their phases increase linearly along this circle so that the phase delay between the neighbor beams on the circle is 2πp/N with N being the number of beams and p being an integer number, then the common topological charge of the superposition is equal to n + p.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.