{"title":"Spin-Orbit Conversion in Vector Optical Vortices in the Paraxial Approximation","authors":"S. S. Stafeev, V. V. Kotlyar","doi":"10.3103/S1060992X24700620","DOIUrl":null,"url":null,"abstract":"<p>In this work, spin-orbit conversion in a vector optical vortex will be considered. The polarization in such a beam corresponds to the polarization of a cylindrical vector beam, that is, it is initially linear at each point. It is shown numerically and analytically using the Richards-Wolf formalism that zones with non-zero longitudinal spin angular momentum are formed in the focal spot, i.e. zones with elliptical polarization. It has been experimentally shown that for the case when the topological charge of the optical vortex coincides with the order of the beam, the observed spin-orbit conversion is large enough to be recorded in the paraxial approximation.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2 supplement","pages":"S305 - S312"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, spin-orbit conversion in a vector optical vortex will be considered. The polarization in such a beam corresponds to the polarization of a cylindrical vector beam, that is, it is initially linear at each point. It is shown numerically and analytically using the Richards-Wolf formalism that zones with non-zero longitudinal spin angular momentum are formed in the focal spot, i.e. zones with elliptical polarization. It has been experimentally shown that for the case when the topological charge of the optical vortex coincides with the order of the beam, the observed spin-orbit conversion is large enough to be recorded in the paraxial approximation.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.