A. I. Kashapov, E. A. Bezus, D. A. Bykov, A. A. Mingazov, L. L. Doskolovich
{"title":"Topological Properties of Reflection Zeros of Optical Differentiators Based on Layered Metal-Dielectric-Metal Structures","authors":"A. I. Kashapov, E. A. Bezus, D. A. Bykov, A. A. Mingazov, L. L. Doskolovich","doi":"10.3103/S1060992X24700607","DOIUrl":null,"url":null,"abstract":"<p>We investigate the topological properties of reflection zeros of three-layer structures consisting of a dielectric layer sandwiched between two metal layers, which can be used as optical differentiators. We show that the reflection zeros possess non-zero topological charges, which makes them topologically protected. With a small perturbation of the parameters of the structure (e.g., a change in one of the layer thicknesses), the reflection zero does not disappear, but shifts in the parameter space, i.e., appears at different wavelength and angle of incidence. We demonstrate that with a further parameter change, two zeros with opposite topological charges (+1 and –1) approach each other, merge, and then disappear. We believe that the obtained results give useful insight regarding the operation of layered metal-dielectric-metal structures possessing reflection zeros.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2 supplement","pages":"S313 - S319"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the topological properties of reflection zeros of three-layer structures consisting of a dielectric layer sandwiched between two metal layers, which can be used as optical differentiators. We show that the reflection zeros possess non-zero topological charges, which makes them topologically protected. With a small perturbation of the parameters of the structure (e.g., a change in one of the layer thicknesses), the reflection zero does not disappear, but shifts in the parameter space, i.e., appears at different wavelength and angle of incidence. We demonstrate that with a further parameter change, two zeros with opposite topological charges (+1 and –1) approach each other, merge, and then disappear. We believe that the obtained results give useful insight regarding the operation of layered metal-dielectric-metal structures possessing reflection zeros.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.