{"title":"Optimizing a Spatial Ring Filter for Edge Extraction Using Convolutional Neural Network","authors":"D. Serafimovich, P. Khorin","doi":"10.3103/S1060992X24700632","DOIUrl":null,"url":null,"abstract":"<p>The effectiveness of using convolutional neural networks to optimize the parameters of a spatial-frequency ring filter that provides contrasting edge detection is investigated. To create a data set, arbitrary images in the form of test objects and their Fourier transform are used. It was found that, value regardless of the internal and external radius, the intensity maximum is detected in the test figure corners of a square and a triangle. However, these values affect the uniformity of energy distribution along the contour of the figures. The energy distribution along the contour of the test circle figure occurs in the same way, virtually size regardless of the internal and external annular diaphragm radius. As for the contour width, it increases in direct proportion to the inner radius size. A convolutional neural network with 8 layers was trained. The images were classified into two groups according to the required contrast in order to determine the optimal parameters of the bandpass filter for identifying edges in an arbitrary test image. The criterion for dividing the training set into two classes is the specified contrast threshold value. After 10 epochs of training the convolutional neural network, an accuracy rate of 0.836 was obtained for the “hook” test image.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2 supplement","pages":"S343 - S358"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The effectiveness of using convolutional neural networks to optimize the parameters of a spatial-frequency ring filter that provides contrasting edge detection is investigated. To create a data set, arbitrary images in the form of test objects and their Fourier transform are used. It was found that, value regardless of the internal and external radius, the intensity maximum is detected in the test figure corners of a square and a triangle. However, these values affect the uniformity of energy distribution along the contour of the figures. The energy distribution along the contour of the test circle figure occurs in the same way, virtually size regardless of the internal and external annular diaphragm radius. As for the contour width, it increases in direct proportion to the inner radius size. A convolutional neural network with 8 layers was trained. The images were classified into two groups according to the required contrast in order to determine the optimal parameters of the bandpass filter for identifying edges in an arbitrary test image. The criterion for dividing the training set into two classes is the specified contrast threshold value. After 10 epochs of training the convolutional neural network, an accuracy rate of 0.836 was obtained for the “hook” test image.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.