E. S. Kozlova, S. S. Stafeev, V. V. Kotlyar, E. A. Kadomina
{"title":"Numerical Modeling of the Electromagnetic Field Measurement Process by the Aluminum Aperture Cantilever","authors":"E. S. Kozlova, S. S. Stafeev, V. V. Kotlyar, E. A. Kadomina","doi":"10.3103/S1060992X24700516","DOIUrl":null,"url":null,"abstract":"<p>In this research we estimate the polarisation influence of the incident radiation on the measurement by a pyramidal aperture cantilever. The numerical modelling of the detection process was made by applying the frequency depended finite-difference time-domain method. We numerically demonstrated that the angle of incidence and the plane of inclination can affect on the measurement process by the aperture aluminum cantilever while the aperture shape has not any influence on the measurement process for both proposed types of incident light polarization: linear and circular left. Simulation results show that as the tilt angle for rotation of incident light increases the total intensity inside the cantilever decreases by about 50 and 30% for the linearly and circularly polarized light. It prooves that aperture aluminum cantilever is weakly sensitive to the longitudinal component.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"33 2 supplement","pages":"S226 - S236"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S1060992X24700516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this research we estimate the polarisation influence of the incident radiation on the measurement by a pyramidal aperture cantilever. The numerical modelling of the detection process was made by applying the frequency depended finite-difference time-domain method. We numerically demonstrated that the angle of incidence and the plane of inclination can affect on the measurement process by the aperture aluminum cantilever while the aperture shape has not any influence on the measurement process for both proposed types of incident light polarization: linear and circular left. Simulation results show that as the tilt angle for rotation of incident light increases the total intensity inside the cantilever decreases by about 50 and 30% for the linearly and circularly polarized light. It prooves that aperture aluminum cantilever is weakly sensitive to the longitudinal component.
期刊介绍:
The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.