Enhanced Photothermal Catalytic CO2 Reduction to High Selective C2H4 by Cooperative Interaction of Oxygen Vacancy and WTe2 Semimetal Cocatalyst In Situ Grown on WO3 Hollow Spheres

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiaoyue Zhang, Yong Yang*, Yingjie Hu, Yong Chen*, Jinyou Shen and Yong Tu, 
{"title":"Enhanced Photothermal Catalytic CO2 Reduction to High Selective C2H4 by Cooperative Interaction of Oxygen Vacancy and WTe2 Semimetal Cocatalyst In Situ Grown on WO3 Hollow Spheres","authors":"Xiaoyue Zhang,&nbsp;Yong Yang*,&nbsp;Yingjie Hu,&nbsp;Yong Chen*,&nbsp;Jinyou Shen and Yong Tu,&nbsp;","doi":"10.1021/acsaem.4c0221210.1021/acsaem.4c02212","DOIUrl":null,"url":null,"abstract":"<p >Photothermal catalytic CO<sub>2</sub> reduction offers a dual solution to the greenhouse effect and energy crisis. Enhancing this process through the development of effective cocatalysts has proven to be a practical approach. In this study, the WO<sub>2.9</sub>/WTe<sub>2</sub> photothermal catalyst was synthesized via an in situ growth method. The catalyst achieved an ethylene production rate of 122.9 μmol·g<sup>–1</sup>, with a selectivity of 78%. Even at a reactor temperature of 240 °C, the ethylene yield reached 475.3 μmol·g<sup>–1</sup>. This improvement in yield can be attributed to the synergistic effects of the semimetal cocatalyst WTe<sub>2</sub> and oxygen vacancies, which exhibit superior catalytic activity. In situ DRIFTS and DFT analyses highlighted the critical role of intermediary aldehyde groups in facilitating C–C coupling. WO<sub>2.9</sub> contributes by modulating the band gap and enhancing CO<sub>2</sub> adsorption via oxygen vacancies, while WTe<sub>2</sub> effectively captures intermediate aldehyde groups, fostering a surface rich in intermediates and promoting C–C bond formation. Additionally, thermal energy accelerates CO<sub>2</sub> activation and the C–C coupling process, creating optimal conditions for generating C<sub>2+</sub> products. This research provides innovative strategies for designing photothermal catalysts and new insights into producing multicarbon fuels through a synergistic photothermal catalytic approach.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 24","pages":"11859–11872 11859–11872"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02212","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photothermal catalytic CO2 reduction offers a dual solution to the greenhouse effect and energy crisis. Enhancing this process through the development of effective cocatalysts has proven to be a practical approach. In this study, the WO2.9/WTe2 photothermal catalyst was synthesized via an in situ growth method. The catalyst achieved an ethylene production rate of 122.9 μmol·g–1, with a selectivity of 78%. Even at a reactor temperature of 240 °C, the ethylene yield reached 475.3 μmol·g–1. This improvement in yield can be attributed to the synergistic effects of the semimetal cocatalyst WTe2 and oxygen vacancies, which exhibit superior catalytic activity. In situ DRIFTS and DFT analyses highlighted the critical role of intermediary aldehyde groups in facilitating C–C coupling. WO2.9 contributes by modulating the band gap and enhancing CO2 adsorption via oxygen vacancies, while WTe2 effectively captures intermediate aldehyde groups, fostering a surface rich in intermediates and promoting C–C bond formation. Additionally, thermal energy accelerates CO2 activation and the C–C coupling process, creating optimal conditions for generating C2+ products. This research provides innovative strategies for designing photothermal catalysts and new insights into producing multicarbon fuels through a synergistic photothermal catalytic approach.

Abstract Image

氧空位与WTe2半金属助催化剂在WO3空心球上的协同作用增强光热催化CO2还原成高选择性C2H4
光热催化CO2还原为温室效应和能源危机提供了双重解决方案。通过开发有效的助催化剂来加强这一过程已被证明是一种实用的方法。本研究采用原位生长法合成了WO2.9/WTe2光热催化剂。该催化剂的乙烯产率为122.9 μmol·g-1,选择性为78%。在240℃的反应温度下,乙烯收率达到475.3 μmol·g-1。产率的提高可归因于半金属助催化剂WTe2和氧空位的协同作用,它们表现出优异的催化活性。原位漂移和DFT分析强调了中间醛在促进C-C偶联中的关键作用。WO2.9的作用是调节带隙,通过氧空位增强CO2吸附,而WTe2则有效捕获中间醛基团,形成富含中间体的表面,促进C-C键的形成。此外,热能加速了CO2的活化和C-C耦合过程,为生成C2+产物创造了最佳条件。该研究为设计光热催化剂提供了创新策略,并为通过协同光热催化方法生产多碳燃料提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信