Conductive Metal–Organic Frameworks for Rechargeable LiOH-Based Li–O2 Batteries

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Yehui Wu, Kun Zhang, Hankun Wang, Xihao Wang, Xingyu Ma, Shengchuang Du, Tiansheng Bai, Yuanfu Deng, Deping Li*, Lijie Ci* and Jingyu Lu*, 
{"title":"Conductive Metal–Organic Frameworks for Rechargeable LiOH-Based Li–O2 Batteries","authors":"Yehui Wu,&nbsp;Kun Zhang,&nbsp;Hankun Wang,&nbsp;Xihao Wang,&nbsp;Xingyu Ma,&nbsp;Shengchuang Du,&nbsp;Tiansheng Bai,&nbsp;Yuanfu Deng,&nbsp;Deping Li*,&nbsp;Lijie Ci* and Jingyu Lu*,&nbsp;","doi":"10.1021/acsaem.4c0251310.1021/acsaem.4c02513","DOIUrl":null,"url":null,"abstract":"<p >The discharge product Li<sub>2</sub>O<sub>2</sub> in conventional Li–O<sub>2</sub> batteries (LOBs) is highly reactive to trigger side reactions and deteriorate the battery performance; these can be circumvented to a great extent in a LiOH-based lithium–oxygen battery, which, however, suffers from efficient catalysis of LiOH formation and decomposition. Herein, we report the first introduction of conductive metal–organic frameworks [conductive MOFs (cMOFs)] to catalyze the LiOH chemistry in LOBs. Specifically, we synthesized three cMOF materials based on M–HHTP (monometallic Ni–HHTP, Co–HHTP, and bimetallic NiCo–HHTP, with HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene). Among them, the bimetallic NiCo–HHTP, benefiting from the synergistic effect of two metal elements, exhibits the best performance in catalyzing the LiOH chemistry of LOBs. It delivers a high discharge capacity (17,845.9 mA h g<sup>–1</sup> at a current density of 100 mA g<sup>–1</sup>), excellent rate capability (6445.9 mA h g<sup>–1</sup> at 500 mA g<sup>–1</sup>), reduced overpotential and side reactions, as well as high cycle stability, demonstrating great potential to promote the development of high-performance LiOH-based LOBs.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 24","pages":"12027–12035 12027–12035"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02513","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The discharge product Li2O2 in conventional Li–O2 batteries (LOBs) is highly reactive to trigger side reactions and deteriorate the battery performance; these can be circumvented to a great extent in a LiOH-based lithium–oxygen battery, which, however, suffers from efficient catalysis of LiOH formation and decomposition. Herein, we report the first introduction of conductive metal–organic frameworks [conductive MOFs (cMOFs)] to catalyze the LiOH chemistry in LOBs. Specifically, we synthesized three cMOF materials based on M–HHTP (monometallic Ni–HHTP, Co–HHTP, and bimetallic NiCo–HHTP, with HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene). Among them, the bimetallic NiCo–HHTP, benefiting from the synergistic effect of two metal elements, exhibits the best performance in catalyzing the LiOH chemistry of LOBs. It delivers a high discharge capacity (17,845.9 mA h g–1 at a current density of 100 mA g–1), excellent rate capability (6445.9 mA h g–1 at 500 mA g–1), reduced overpotential and side reactions, as well as high cycle stability, demonstrating great potential to promote the development of high-performance LiOH-based LOBs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信