Z-Scheme Transfer Path of Charges in the BiVO4/Bi:ZnIn2S4-Co Photoanode for Photoelectrochemical Water Splitting

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xinyang Fu, Yixin Qi, Yanan Zhao, Weibing Li* and Yaping Zhang*, 
{"title":"Z-Scheme Transfer Path of Charges in the BiVO4/Bi:ZnIn2S4-Co Photoanode for Photoelectrochemical Water Splitting","authors":"Xinyang Fu,&nbsp;Yixin Qi,&nbsp;Yanan Zhao,&nbsp;Weibing Li* and Yaping Zhang*,&nbsp;","doi":"10.1021/acsaem.4c0234210.1021/acsaem.4c02342","DOIUrl":null,"url":null,"abstract":"<p >The significant carrier recombination occurring in the bulk of BiVO<sub>4</sub> is a primary factor limiting the enhancement of its photoelectrochemical performance. To address this issue, we have incorporated two-dimensional (2D) nanosheet morphology Bi:ZnIn<sub>2</sub>S<sub>4</sub> and Co sites onto the surface of BiVO<sub>4</sub> to create an effective composite photoanode. According to the ultraviolet-visible diffuse reflectance spectroscopy and ultraviolet photoelectron spectroscopy results, it was inferred that a Z-scheme transfer path of charges was formed between BiVO<sub>4</sub> and Bi:ZnIn<sub>2</sub>S<sub>4</sub>, which promoted the separation of bulk phase carriers. Additionally, the 2D topography of Bi:ZnIn<sub>2</sub>S<sub>4</sub> also shortens the transmission distance of the carriers. Furthermore, the presence of Co sites provides more active sites for the surface hydrolysis reaction to proceed. Ultimately, under AM1.5G illumination, the photocurrent density of the BiVO<sub>4</sub>/Bi:ZnIn<sub>2</sub>S<sub>4</sub>-Co photoanode reaches 3.6 mA cm<sup>–2</sup> at 1.23 V vs reversible hydrogen electrodes.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 24","pages":"11946–11953 11946–11953"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02342","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The significant carrier recombination occurring in the bulk of BiVO4 is a primary factor limiting the enhancement of its photoelectrochemical performance. To address this issue, we have incorporated two-dimensional (2D) nanosheet morphology Bi:ZnIn2S4 and Co sites onto the surface of BiVO4 to create an effective composite photoanode. According to the ultraviolet-visible diffuse reflectance spectroscopy and ultraviolet photoelectron spectroscopy results, it was inferred that a Z-scheme transfer path of charges was formed between BiVO4 and Bi:ZnIn2S4, which promoted the separation of bulk phase carriers. Additionally, the 2D topography of Bi:ZnIn2S4 also shortens the transmission distance of the carriers. Furthermore, the presence of Co sites provides more active sites for the surface hydrolysis reaction to proceed. Ultimately, under AM1.5G illumination, the photocurrent density of the BiVO4/Bi:ZnIn2S4-Co photoanode reaches 3.6 mA cm–2 at 1.23 V vs reversible hydrogen electrodes.

Abstract Image

BiVO4/Bi:ZnIn2S4-Co光电阳极中电荷的Z-Scheme转移路径
大量的BiVO4载流子重组是限制其光电性能增强的主要因素。为了解决这个问题,我们在BiVO4表面加入了二维(2D)纳米片形态的Bi:ZnIn2S4和Co位点,以创建有效的复合光阳极。根据紫外-可见漫反射光谱和紫外光电子能谱结果推断,BiVO4和Bi:ZnIn2S4之间形成了Z-scheme电荷转移路径,促进了体相载流子的分离。此外,Bi:ZnIn2S4的二维形貌也缩短了载流子的传输距离。此外,Co位点的存在为表面水解反应的进行提供了更多的活性位点。最终,在AM1.5G照明下,在1.23 V vs可逆氢电极下,BiVO4/Bi:ZnIn2S4-Co光阳极的光电流密度达到3.6 mA cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信