Water-Stable Al(III) Coordination Polymer Glass with High Proton Conductivity toward Stable Electrolytes in a Fuel Cell

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Kazuki Takahashi, Tomohiro Ogawa*, Tomoya Itakura, Kenichiro Kami and Satoshi Horike*, 
{"title":"Water-Stable Al(III) Coordination Polymer Glass with High Proton Conductivity toward Stable Electrolytes in a Fuel Cell","authors":"Kazuki Takahashi,&nbsp;Tomohiro Ogawa*,&nbsp;Tomoya Itakura,&nbsp;Kenichiro Kami and Satoshi Horike*,&nbsp;","doi":"10.1021/acsaem.4c0231010.1021/acsaem.4c02310","DOIUrl":null,"url":null,"abstract":"<p >Coordination polymer (CP) glasses make up a class of solid-state proton conductors as possible electrolytes for anhydrous H<sub>2</sub>/O<sub>2</sub> fuel cells. Toward these potential applications, the development of water-stable CP glasses is crucial to maintaining stable power generation over the long-term. Here, we report a water-stable Al(III)-based CP glass ((dema)<sub>0.9</sub>[Al(H<sub>2</sub>O)<sub>1.8</sub>(H<sub>2</sub>PO<sub>4</sub>)<sub>3.9</sub>(H<sub>3</sub>PO<sub>4</sub>)<sub>1.1</sub>]). Compared to previously reported Zn-based CP glasses, the Al-based CP glass showed significantly higher hydrolytic stability due to stable coordination bonds. In addition to improved water stability, the Al-based CP glass exhibited high viscosity (η = 10<sup>1</sup>–10<sup>4</sup> Pa·s) and high ionic conductivity (&gt;20 mS·cm<sup>–1</sup> at 120 °C) under anhydrous conditions. This unique property is attributed to a Grotthuss-type selective proton transport mechanism. The H<sub>2</sub>/O<sub>2</sub> fuel cell power generation using this CP glass exhibited a high maximum power density (299 mW·cm<sup>–2</sup>) and high open-circuit voltage (0.93 V) under anhydrous conditions at 120 °C. These results demonstrate that the employment of Al(III) in CP glasses is a promising strategy for the practical application of CP glasses in fuel cell devices.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 24","pages":"11937–11945 11937–11945"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02310","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Coordination polymer (CP) glasses make up a class of solid-state proton conductors as possible electrolytes for anhydrous H2/O2 fuel cells. Toward these potential applications, the development of water-stable CP glasses is crucial to maintaining stable power generation over the long-term. Here, we report a water-stable Al(III)-based CP glass ((dema)0.9[Al(H2O)1.8(H2PO4)3.9(H3PO4)1.1]). Compared to previously reported Zn-based CP glasses, the Al-based CP glass showed significantly higher hydrolytic stability due to stable coordination bonds. In addition to improved water stability, the Al-based CP glass exhibited high viscosity (η = 101–104 Pa·s) and high ionic conductivity (>20 mS·cm–1 at 120 °C) under anhydrous conditions. This unique property is attributed to a Grotthuss-type selective proton transport mechanism. The H2/O2 fuel cell power generation using this CP glass exhibited a high maximum power density (299 mW·cm–2) and high open-circuit voltage (0.93 V) under anhydrous conditions at 120 °C. These results demonstrate that the employment of Al(III) in CP glasses is a promising strategy for the practical application of CP glasses in fuel cell devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信