Francisco L. Feitosa, Victoria F. Cabral, Igor H. Sanches, Sabrina Silva-Mendonca, Joyce V. V. B. Borba, Rodolpho C. Braga and Carolina Horta Andrade*,
{"title":"Cyto-Safe: A Machine Learning Tool for Early Identification of Cytotoxic Compounds in Drug Discovery","authors":"Francisco L. Feitosa, Victoria F. Cabral, Igor H. Sanches, Sabrina Silva-Mendonca, Joyce V. V. B. Borba, Rodolpho C. Braga and Carolina Horta Andrade*, ","doi":"10.1021/acs.jcim.4c0181110.1021/acs.jcim.4c01811","DOIUrl":null,"url":null,"abstract":"<p >Cytotoxicity is essential in drug discovery, enabling early evaluation of toxic compounds during screenings to minimize toxicological risks. <i>In vitro</i> assays support high-throughput screening, allowing for efficient detection of toxic substances while considerably reducing the need for animal testing. Additionally, AI-based Quantitative Structure–Activity Relationship (AI-QSAR) models enhance early stage predictions by assessing the cytotoxic potential of molecular structures, which helps prioritize low-risk compounds for further validation. We present a freely accessible web application designed for identifying potential cytotoxic compounds utilizing QSAR models. This application utilizes machine learning techniques and is built on a data set of approximately 90,000 compounds, evaluated against two cell lines, 3T3 and HEK 293. Users can interact with the app by inputting a SMILES representation, uploading CSV or SDF files, or sketching molecules. The output includes a binary prediction for each cell line, a confidence percentage, and an explainable AI (XAI) analysis. Cyto-Safe web-app version 1.0 is available at http://insightai.labmol.com.br/.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"64 24","pages":"9056–9062 9056–9062"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jcim.4c01811","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jcim.4c01811","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cytotoxicity is essential in drug discovery, enabling early evaluation of toxic compounds during screenings to minimize toxicological risks. In vitro assays support high-throughput screening, allowing for efficient detection of toxic substances while considerably reducing the need for animal testing. Additionally, AI-based Quantitative Structure–Activity Relationship (AI-QSAR) models enhance early stage predictions by assessing the cytotoxic potential of molecular structures, which helps prioritize low-risk compounds for further validation. We present a freely accessible web application designed for identifying potential cytotoxic compounds utilizing QSAR models. This application utilizes machine learning techniques and is built on a data set of approximately 90,000 compounds, evaluated against two cell lines, 3T3 and HEK 293. Users can interact with the app by inputting a SMILES representation, uploading CSV or SDF files, or sketching molecules. The output includes a binary prediction for each cell line, a confidence percentage, and an explainable AI (XAI) analysis. Cyto-Safe web-app version 1.0 is available at http://insightai.labmol.com.br/.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.