An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Zhuolin Li, Zhen Zhang, Witold Pedrycz
{"title":"An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting","authors":"Zhuolin Li, Zhen Zhang, Witold Pedrycz","doi":"10.1016/j.ejor.2024.11.047","DOIUrl":null,"url":null,"abstract":"Leveraging assignment example preference information, to determine the shape of marginal utility functions and category thresholds of the threshold-based multi-criteria sorting (MCS) model, has emerged as a focal point of current research within the realm of MCS. Most studies assume decision makers can provide all assignment example preference information in batch and that their preferences over criteria are monotonic, which may not align with practical MCS problems. This paper introduces a novel incremental preference elicitation-based approach to learning potentially non-monotonic preferences in MCS problems, enabling decision makers to progressively provide assignment example preference information. Specifically, we first construct a max-margin optimization-based model to model potentially non-monotonic preferences and inconsistent assignment example preference information in each iteration of the incremental preference elicitation process. Using the optimal objective function value of the max-margin optimization-based model, we devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration within the framework of uncertainty sampling in active learning. Once the termination criterion is satisfied, the sorting result for non-reference alternatives can be determined through the use of two optimization models, i.e., the max-margin optimization-based model and the complexity controlling optimization model. Subsequently, two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences, considering different termination criteria. Ultimately, we apply the proposed approach to a firm financial state rating problem to elucidate the detailed implementation steps, and perform computational experiments on both artificial and real-world data sets to compare the proposed question selection strategies with several benchmark strategies.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"282 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2024.11.047","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Leveraging assignment example preference information, to determine the shape of marginal utility functions and category thresholds of the threshold-based multi-criteria sorting (MCS) model, has emerged as a focal point of current research within the realm of MCS. Most studies assume decision makers can provide all assignment example preference information in batch and that their preferences over criteria are monotonic, which may not align with practical MCS problems. This paper introduces a novel incremental preference elicitation-based approach to learning potentially non-monotonic preferences in MCS problems, enabling decision makers to progressively provide assignment example preference information. Specifically, we first construct a max-margin optimization-based model to model potentially non-monotonic preferences and inconsistent assignment example preference information in each iteration of the incremental preference elicitation process. Using the optimal objective function value of the max-margin optimization-based model, we devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration within the framework of uncertainty sampling in active learning. Once the termination criterion is satisfied, the sorting result for non-reference alternatives can be determined through the use of two optimization models, i.e., the max-margin optimization-based model and the complexity controlling optimization model. Subsequently, two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences, considering different termination criteria. Ultimately, we apply the proposed approach to a firm financial state rating problem to elucidate the detailed implementation steps, and perform computational experiments on both artificial and real-world data sets to compare the proposed question selection strategies with several benchmark strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信