Low-variance estimation of live fuel moisture content using VIIRS data through radiative transfer model

IF 7.6 Q1 REMOTE SENSING
Shuai Yang, Rui Chen, Binbin He, Yiru Zhang
{"title":"Low-variance estimation of live fuel moisture content using VIIRS data through radiative transfer model","authors":"Shuai Yang,&nbsp;Rui Chen,&nbsp;Binbin He,&nbsp;Yiru Zhang","doi":"10.1016/j.jag.2024.104311","DOIUrl":null,"url":null,"abstract":"<div><div>The Canopy Live Fuel Moisture Content (LFMC) is a pivotal factor in wildfire risk assessment within the fire triangle model, representing the ratio of canopy moisture content to its dry weight. Against the backdrop of degraded Moderate Resolution Imaging Spectroradiometer (MODIS) performance and the underutilization of Visible Infrared Imaging Radiometer Suite (VIIRS) in LFMC inversion, this study harnessed the coupled radiative transfer models (RTMs) to probe the spectral sensitivity of the VIIRS to LFMC and pinpoint the optimal band combination for LFMC inversion. To tackle the challenge of ill-posed inversion, we leveraged the correlation coefficient matrix to mitigate erroneous combinations of free parameters in the construction of the lookup table. Results showcase that VIIRS-based LFMC inversion yields marginally superior accuracy (R<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo></mrow></math></span> 0.57, R<span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo></mrow></math></span> 0.32) for both grassland and forest types, with VIIRS-based inversion demonstrating a lower relative root mean square error (rRMSE <span><math><mo>=</mo></math></span> 5.84%), compared to results from the MODIS. By scrutinizing LFMC trends alongside precipitation (PP) data in four forest fires spanning from 2019 to 2022 in southwest China, varied degrees of LFMC decrease preceding fire outbreaks. Those results substantiated the validity of the proposed method for wildfire warning. Consequently, our study asserts the reliability of VIIRS in LFMC inversion, positioning it as a viable substitute and extension of MODIS. VIIRS offers continuous and effective product support for wildfire warning assessment, enhancing our ability to monitor and mitigate wildfire risks.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"136 ","pages":"Article 104311"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843224006691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

The Canopy Live Fuel Moisture Content (LFMC) is a pivotal factor in wildfire risk assessment within the fire triangle model, representing the ratio of canopy moisture content to its dry weight. Against the backdrop of degraded Moderate Resolution Imaging Spectroradiometer (MODIS) performance and the underutilization of Visible Infrared Imaging Radiometer Suite (VIIRS) in LFMC inversion, this study harnessed the coupled radiative transfer models (RTMs) to probe the spectral sensitivity of the VIIRS to LFMC and pinpoint the optimal band combination for LFMC inversion. To tackle the challenge of ill-posed inversion, we leveraged the correlation coefficient matrix to mitigate erroneous combinations of free parameters in the construction of the lookup table. Results showcase that VIIRS-based LFMC inversion yields marginally superior accuracy (R2= 0.57, R2= 0.32) for both grassland and forest types, with VIIRS-based inversion demonstrating a lower relative root mean square error (rRMSE = 5.84%), compared to results from the MODIS. By scrutinizing LFMC trends alongside precipitation (PP) data in four forest fires spanning from 2019 to 2022 in southwest China, varied degrees of LFMC decrease preceding fire outbreaks. Those results substantiated the validity of the proposed method for wildfire warning. Consequently, our study asserts the reliability of VIIRS in LFMC inversion, positioning it as a viable substitute and extension of MODIS. VIIRS offers continuous and effective product support for wildfire warning assessment, enhancing our ability to monitor and mitigate wildfire risks.
基于辐射传输模型的VIIRS数据对活燃料含水率的低方差估计
林冠活燃料含水率(LFMC)代表林冠含水率与其干重的比值,是火灾三角模型中野火风险评估的关键因子。在中分辨率成像光谱仪(MODIS)性能下降和可见光红外成像辐射计套件(VIIRS)在LFMC反演中利用不足的背景下,利用耦合辐射传输模型(RTMs)探讨了中分辨率成像辐射计(VIIRS)对LFMC的光谱灵敏度,并确定了LFMC反演的最佳波段组合。为了解决不适定反演的挑战,我们利用相关系数矩阵来减轻查找表构造中自由参数的错误组合。结果表明,与MODIS相比,基于viirs的LFMC反演在草地和森林类型上的精度略高(R2= 0.57, R2= 0.32),基于viirs的反演显示出更低的相对均方根误差(rRMSE = 5.84%)。通过分析2019 - 2022年中国西南地区4次森林火灾的LFMC趋势和降水(PP)数据,发现火灾发生前LFMC有不同程度的下降。这些结果证实了所提出的野火预警方法的有效性。因此,我们的研究证实了VIIRS在LFMC反演中的可靠性,将其定位为MODIS的可行替代品和扩展。VIIRS为野火预警评估提供持续有效的产品支持,增强我们监测和减轻野火风险的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信