{"title":"Investigating heat-related health risks related to local climate zones using SDGSAT-1 high-resolution thermal infrared imagery in an arid megacity","authors":"Muhammad Fahad Baqa, Linlin Lu, Huadong Guo, Xiaoning Song, Seyed Kazem Alavipanah, Syed Nawaz-ul-Huda, Qingting Li, Fang Chen","doi":"10.1016/j.jag.2024.104334","DOIUrl":null,"url":null,"abstract":"Due to the compounding impacts of urbanization and climate change-induced warming, urban inhabitants face increasing risks of thermal health issues. The use of high-resolution maps that categorize intra-urban thermal environment and Local Climate Zones (LCZ) could enhance the understanding of the correlation between heat-related health risks and microclimates. In this study, a fine-scale heat risk assessment framework was applied in an arid megacity, Karachi, Pakistan. Following Crichton’s Risk Triangle framework, heat health risks were mapped by considering hazard-exposure-vulnerability components at the census ward level. The heat hazard was mapped using SDGSAT-1 thermal infrared data at a 30 m spatial resolution during summer season. Factors contributing most to heat vulnerability were identified as the availability of electricity facilities, bathroom facilities, and housing density, with contribution rates of 47.51 %, 21.86 %, and 8.07 %, respectively. Heat risks were considerably higher for built types (0.16) compared to natural LCZ types (0.07), with 65 % of LCZ 2, 3, 6, and 7 (compact mid-rise, compact low-rise, open low-rise, and lightweight low-rise areas) identified as high-risk areas. To mitigate heat risks, green space should be planned in LCZ2 and LCZ3 characterized by dense population and compact buildings arrangement, and public cooling facilities and infrastructure should be improved in LCZ7 featured with squatter and slum settlements. Urban planners may consider restricting the growth of these areas in newly-developed regions, including encroachments and unplanned settlements, to prevent further exacerbation of heat stress. This study offers a valuable guide for assessing and alleviating heat risks at the community level, thereby promoting the development of heat resilient urban areas.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"14 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104334","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the compounding impacts of urbanization and climate change-induced warming, urban inhabitants face increasing risks of thermal health issues. The use of high-resolution maps that categorize intra-urban thermal environment and Local Climate Zones (LCZ) could enhance the understanding of the correlation between heat-related health risks and microclimates. In this study, a fine-scale heat risk assessment framework was applied in an arid megacity, Karachi, Pakistan. Following Crichton’s Risk Triangle framework, heat health risks were mapped by considering hazard-exposure-vulnerability components at the census ward level. The heat hazard was mapped using SDGSAT-1 thermal infrared data at a 30 m spatial resolution during summer season. Factors contributing most to heat vulnerability were identified as the availability of electricity facilities, bathroom facilities, and housing density, with contribution rates of 47.51 %, 21.86 %, and 8.07 %, respectively. Heat risks were considerably higher for built types (0.16) compared to natural LCZ types (0.07), with 65 % of LCZ 2, 3, 6, and 7 (compact mid-rise, compact low-rise, open low-rise, and lightweight low-rise areas) identified as high-risk areas. To mitigate heat risks, green space should be planned in LCZ2 and LCZ3 characterized by dense population and compact buildings arrangement, and public cooling facilities and infrastructure should be improved in LCZ7 featured with squatter and slum settlements. Urban planners may consider restricting the growth of these areas in newly-developed regions, including encroachments and unplanned settlements, to prevent further exacerbation of heat stress. This study offers a valuable guide for assessing and alleviating heat risks at the community level, thereby promoting the development of heat resilient urban areas.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.