{"title":"3D automatic detection and correction for phase unwrapping errors in time series SAR interferometry","authors":"Ying Liu, Hong’an Wu, Yonghong Zhang, Zhong Lu, Yonghui Kang, Jujie Wei","doi":"10.1016/j.isprsjprs.2024.12.013","DOIUrl":null,"url":null,"abstract":"Phase unwrapping (PhU) is one of the most critical steps in synthetic aperture radar interferometry (InSAR) technology. However, the current phase unwrapping methods cannot completely avoid the PhU errors, particularly in complex environments with low coherence. Here, we show that the PhU errors can be corrected well with the time series interferograms. We propose a three-dimensional automatic detection and correction (3D-ADAC) method based on phase closure for time-series InSAR PhU errors to improve the quality of the interferograms, especially for the regions with the same errors in different interferograms which cancel each other out in phase closure. The 3D-ADAC algorithm was evaluated with 26 Sentinel-1 SAR images and 72 phase closure loops over the Tianjin region, China, and compared with the popular MintPy and CorPhU methods. Our results demonstrate that the number of new arcs with model coherence coefficient greater than 0.7 achieved by the proposed method is 2.36 times that by the method used in the MintPy software and 3.07 times that by the CorPhU method. The corrected and improved interferograms will be helpful for accurately mapping the ground deformations or Earth topographies via InSAR technology. Codes and data are available at https://github.com/Lylionaurora/code3d-ADCD.","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"1 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.isprsjprs.2024.12.013","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Phase unwrapping (PhU) is one of the most critical steps in synthetic aperture radar interferometry (InSAR) technology. However, the current phase unwrapping methods cannot completely avoid the PhU errors, particularly in complex environments with low coherence. Here, we show that the PhU errors can be corrected well with the time series interferograms. We propose a three-dimensional automatic detection and correction (3D-ADAC) method based on phase closure for time-series InSAR PhU errors to improve the quality of the interferograms, especially for the regions with the same errors in different interferograms which cancel each other out in phase closure. The 3D-ADAC algorithm was evaluated with 26 Sentinel-1 SAR images and 72 phase closure loops over the Tianjin region, China, and compared with the popular MintPy and CorPhU methods. Our results demonstrate that the number of new arcs with model coherence coefficient greater than 0.7 achieved by the proposed method is 2.36 times that by the method used in the MintPy software and 3.07 times that by the CorPhU method. The corrected and improved interferograms will be helpful for accurately mapping the ground deformations or Earth topographies via InSAR technology. Codes and data are available at https://github.com/Lylionaurora/code3d-ADCD.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.