Madison S. Brown, Nicholas C. Coops, Christopher Mulverhill, Alexis Achim
{"title":"Detection of non-stand replacing disturbances (NSR) using Harmonized Landsat-Sentinel-2 time series","authors":"Madison S. Brown, Nicholas C. Coops, Christopher Mulverhill, Alexis Achim","doi":"10.1016/j.isprsjprs.2024.12.014","DOIUrl":null,"url":null,"abstract":"Non-stand replacing disturbances (NSRs) are events that do not result in complete removal of trees and generally occur at a low intensity over an extended period of time (e.g., insect infestation), or at spatially variable intensities over short time intervals (e.g., windthrow). These disturbances alter the quality and quantity of forest biomass, impacting timber supply and ecosystem services, making them critical to monitor over space and time. The increased accessibility of high frequency revisit, moderate spatial resolution satellite imagery, has led to a subsequent increase in algorithms designed to detect sub-annual change in forested landscapes across broad spatial scales. One such algorithm, the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) has shown promise with sub-annual change detection in temperate forested environments. Here, we evaluate the sensitivity of BEAST to detect NSRs across a range of severity levels and disturbance agents in Central British Columbia (BC), Canada. Moderate resolution satellite time series data were utilized by BEAST to produce rasters of change probability, which were compared to the occurrence, severity, and timing of disturbances as mapped by the annual British Columbia Aerial Overview Survey (BC AOS). Differences in the distributions of BEAST probabilities between agents and levels of severity were then compared to undisturbed pixels. In order to determine the applicability of the algorithm for updating forest inventories, BEAST probability distributions of major NSRs (> 5 % of total AOS disturbed area) were compared between consecutive years of disturbances. Cumulatively, all levels of disturbances had higher and statistically significant (p < 0.05) mean BEAST change probabilities compared with historically undisturbed areas. Additionally, 16 disturbance agents observed in the area had higher statistically significant (p < 0.05) probabilities. All major NSRs showed an upwards and statistically significant (p < 0.05) progression of BEAST probabilities over time corresponding to increases in BC AOS mapped area. The sensitivity of BEAST change probabilities to a wide range of NSR disturbance agents at varying intensities suggests promising opportunities for earlier detection of NSRs to inform continuously updating forest inventories and potentially inform adaptation and mitigation actions.","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"22 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.isprsjprs.2024.12.014","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Non-stand replacing disturbances (NSRs) are events that do not result in complete removal of trees and generally occur at a low intensity over an extended period of time (e.g., insect infestation), or at spatially variable intensities over short time intervals (e.g., windthrow). These disturbances alter the quality and quantity of forest biomass, impacting timber supply and ecosystem services, making them critical to monitor over space and time. The increased accessibility of high frequency revisit, moderate spatial resolution satellite imagery, has led to a subsequent increase in algorithms designed to detect sub-annual change in forested landscapes across broad spatial scales. One such algorithm, the Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST) has shown promise with sub-annual change detection in temperate forested environments. Here, we evaluate the sensitivity of BEAST to detect NSRs across a range of severity levels and disturbance agents in Central British Columbia (BC), Canada. Moderate resolution satellite time series data were utilized by BEAST to produce rasters of change probability, which were compared to the occurrence, severity, and timing of disturbances as mapped by the annual British Columbia Aerial Overview Survey (BC AOS). Differences in the distributions of BEAST probabilities between agents and levels of severity were then compared to undisturbed pixels. In order to determine the applicability of the algorithm for updating forest inventories, BEAST probability distributions of major NSRs (> 5 % of total AOS disturbed area) were compared between consecutive years of disturbances. Cumulatively, all levels of disturbances had higher and statistically significant (p < 0.05) mean BEAST change probabilities compared with historically undisturbed areas. Additionally, 16 disturbance agents observed in the area had higher statistically significant (p < 0.05) probabilities. All major NSRs showed an upwards and statistically significant (p < 0.05) progression of BEAST probabilities over time corresponding to increases in BC AOS mapped area. The sensitivity of BEAST change probabilities to a wide range of NSR disturbance agents at varying intensities suggests promising opportunities for earlier detection of NSRs to inform continuously updating forest inventories and potentially inform adaptation and mitigation actions.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.