High Molecular Weight Uniform Polymers Encoding Octal Sequences by Passerini Iterative Exponential Growth

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Valene Wang, Su Bin Park, Soo Jeong Lee, Mo Beom Koo, Kyoung Taek Kim
{"title":"High Molecular Weight Uniform Polymers Encoding Octal Sequences by Passerini Iterative Exponential Growth","authors":"Valene Wang, Su Bin Park, Soo Jeong Lee, Mo Beom Koo, Kyoung Taek Kim","doi":"10.1021/jacs.4c13528","DOIUrl":null,"url":null,"abstract":"Sequence-defined polymers composed of a large pool of chemically distinct monomers (SDPs) have been pursued to achieve the structural and functional precisions exhibited by biopolymers in nonbiological environments. In contrast to the incremental growth of SDPs by sequential addition of individual monomers, the iterative exponential growth (IEG) method allows the synthesis of high molecular-weight SDPs, but their sequences have been composed mostly of binary monomers. Consequently, achieving high molecular-weight SDPs built with a large pool of monomers remains a challenge. Here we report the Passerini iterative exponential growth (P-IEG) approach that enables efficient synthesis of 128-mer uniform poly(hydroxybutyrate) (PHB), possessing 127 γ-acylamino cyclohexyl side groups (27 kDa, <i>Đ</i> = 1) and a 31-mer SDP, encoding an octal sequence composed of eight chemically distinct repeating units. Taking advantage of the combinatorial character of the Passerini three-component reaction involving an aldehyde, a carboxylic acid, and an isocyanide to form an acyloxy amide linkage, we simultaneously achieved the exponential chain growth through the convergence of bifunctional building blocks and side-chain implementation by selecting appropriate isocyanides as a third component. The P-IEG approach enabled the synthetic encoding of complex information, an octal sequence equivalent to a 93-bit binary code, into a 31-mer SDP. Our proposed P-IEG method could contribute to the synthesis of synthetic macromolecules with absolutely defined sequences of functionalities. These polymers could be used for the development of functional materials with properties not achievable by conventional polymers, including polymers storing digital information at higher density.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"34 4 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c13528","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sequence-defined polymers composed of a large pool of chemically distinct monomers (SDPs) have been pursued to achieve the structural and functional precisions exhibited by biopolymers in nonbiological environments. In contrast to the incremental growth of SDPs by sequential addition of individual monomers, the iterative exponential growth (IEG) method allows the synthesis of high molecular-weight SDPs, but their sequences have been composed mostly of binary monomers. Consequently, achieving high molecular-weight SDPs built with a large pool of monomers remains a challenge. Here we report the Passerini iterative exponential growth (P-IEG) approach that enables efficient synthesis of 128-mer uniform poly(hydroxybutyrate) (PHB), possessing 127 γ-acylamino cyclohexyl side groups (27 kDa, Đ = 1) and a 31-mer SDP, encoding an octal sequence composed of eight chemically distinct repeating units. Taking advantage of the combinatorial character of the Passerini three-component reaction involving an aldehyde, a carboxylic acid, and an isocyanide to form an acyloxy amide linkage, we simultaneously achieved the exponential chain growth through the convergence of bifunctional building blocks and side-chain implementation by selecting appropriate isocyanides as a third component. The P-IEG approach enabled the synthetic encoding of complex information, an octal sequence equivalent to a 93-bit binary code, into a 31-mer SDP. Our proposed P-IEG method could contribute to the synthesis of synthetic macromolecules with absolutely defined sequences of functionalities. These polymers could be used for the development of functional materials with properties not achievable by conventional polymers, including polymers storing digital information at higher density.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信