Enhanced Ionic Conductivity via Suppressed Crystallization and Strengthened Dynamics in Solid Polymer-Blend Electrolytes: A Comprehensive Broadband Dielectric Spectroscopy Study
Seunghan Yun, Insu Hwang, Jang Wook Choi, So Youn Kim
{"title":"Enhanced Ionic Conductivity via Suppressed Crystallization and Strengthened Dynamics in Solid Polymer-Blend Electrolytes: A Comprehensive Broadband Dielectric Spectroscopy Study","authors":"Seunghan Yun, Insu Hwang, Jang Wook Choi, So Youn Kim","doi":"10.1021/acs.macromol.4c01879","DOIUrl":null,"url":null,"abstract":"In this study, we introduce solid polymer-blend electrolytes (SPBEs) in which the crystallization of poly(ethylene glycol) (PEG) is completely suppressed. This achievement was realized by utilizing low molecular weight PEG and incorporating high molecular weight poly(vinylidene fluoride) (PVDF) as the blend matrix, resulting in flexible and self-standing SPBEs. Complete inhibition of PEG crystallization is observed when employing the lower molecular weight of PEG or the higher concentration of lithium salt, leading to an impressive ionic conductivity of 2.9 × 10<sup>–4</sup> S/cm at room temperature. Temperature-dependent ionic conductivity shows a strong correlation between ionic transport and segmental motion of the blend matrix, following the Vogel–Tammann–Fulcher (VTF) relation. Further analysis of AC conductivity, electric modulus, and dielectric loss isotherms, obtained through broadband dielectric spectroscopy, reveals a coupling behavior between the relaxation times and the ionic conductivity. This experimental system can serve as a model system for designing high-performance polymer-blend-based solid electrolytes to achieve good mechanical properties and superior ionic conductivities.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"24 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01879","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we introduce solid polymer-blend electrolytes (SPBEs) in which the crystallization of poly(ethylene glycol) (PEG) is completely suppressed. This achievement was realized by utilizing low molecular weight PEG and incorporating high molecular weight poly(vinylidene fluoride) (PVDF) as the blend matrix, resulting in flexible and self-standing SPBEs. Complete inhibition of PEG crystallization is observed when employing the lower molecular weight of PEG or the higher concentration of lithium salt, leading to an impressive ionic conductivity of 2.9 × 10–4 S/cm at room temperature. Temperature-dependent ionic conductivity shows a strong correlation between ionic transport and segmental motion of the blend matrix, following the Vogel–Tammann–Fulcher (VTF) relation. Further analysis of AC conductivity, electric modulus, and dielectric loss isotherms, obtained through broadband dielectric spectroscopy, reveals a coupling behavior between the relaxation times and the ionic conductivity. This experimental system can serve as a model system for designing high-performance polymer-blend-based solid electrolytes to achieve good mechanical properties and superior ionic conductivities.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.