Enhanced Ionic Conductivity via Suppressed Crystallization and Strengthened Dynamics in Solid Polymer-Blend Electrolytes: A Comprehensive Broadband Dielectric Spectroscopy Study

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Seunghan Yun, Insu Hwang, Jang Wook Choi, So Youn Kim
{"title":"Enhanced Ionic Conductivity via Suppressed Crystallization and Strengthened Dynamics in Solid Polymer-Blend Electrolytes: A Comprehensive Broadband Dielectric Spectroscopy Study","authors":"Seunghan Yun, Insu Hwang, Jang Wook Choi, So Youn Kim","doi":"10.1021/acs.macromol.4c01879","DOIUrl":null,"url":null,"abstract":"In this study, we introduce solid polymer-blend electrolytes (SPBEs) in which the crystallization of poly(ethylene glycol) (PEG) is completely suppressed. This achievement was realized by utilizing low molecular weight PEG and incorporating high molecular weight poly(vinylidene fluoride) (PVDF) as the blend matrix, resulting in flexible and self-standing SPBEs. Complete inhibition of PEG crystallization is observed when employing the lower molecular weight of PEG or the higher concentration of lithium salt, leading to an impressive ionic conductivity of 2.9 × 10<sup>–4</sup> S/cm at room temperature. Temperature-dependent ionic conductivity shows a strong correlation between ionic transport and segmental motion of the blend matrix, following the Vogel–Tammann–Fulcher (VTF) relation. Further analysis of AC conductivity, electric modulus, and dielectric loss isotherms, obtained through broadband dielectric spectroscopy, reveals a coupling behavior between the relaxation times and the ionic conductivity. This experimental system can serve as a model system for designing high-performance polymer-blend-based solid electrolytes to achieve good mechanical properties and superior ionic conductivities.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"24 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c01879","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce solid polymer-blend electrolytes (SPBEs) in which the crystallization of poly(ethylene glycol) (PEG) is completely suppressed. This achievement was realized by utilizing low molecular weight PEG and incorporating high molecular weight poly(vinylidene fluoride) (PVDF) as the blend matrix, resulting in flexible and self-standing SPBEs. Complete inhibition of PEG crystallization is observed when employing the lower molecular weight of PEG or the higher concentration of lithium salt, leading to an impressive ionic conductivity of 2.9 × 10–4 S/cm at room temperature. Temperature-dependent ionic conductivity shows a strong correlation between ionic transport and segmental motion of the blend matrix, following the Vogel–Tammann–Fulcher (VTF) relation. Further analysis of AC conductivity, electric modulus, and dielectric loss isotherms, obtained through broadband dielectric spectroscopy, reveals a coupling behavior between the relaxation times and the ionic conductivity. This experimental system can serve as a model system for designing high-performance polymer-blend-based solid electrolytes to achieve good mechanical properties and superior ionic conductivities.

Abstract Image

固体聚合物共混电解质中通过抑制结晶和强化动力学来增强离子电导率:一个全面的宽带介电光谱研究
在这项研究中,我们引入了固体聚合物共混电解质(SPBEs),其中聚乙二醇(PEG)的结晶被完全抑制。这一成果是通过利用低分子量的聚乙二醇和高分子量的聚偏氟乙烯(PVDF)作为共混基体实现的,从而产生了柔性和独立式SPBEs。当使用较低分子量的PEG或较高浓度的锂盐时,观察到完全抑制PEG结晶,导致室温下令人印象深刻的离子电导率为2.9 × 10-4 S/cm。温度相关的离子电导率表明,离子传输与混合矩阵的节段运动之间存在很强的相关性,遵循Vogel-Tammann-Fulcher (VTF)关系。通过宽带介电光谱得到的交流电导率、电模量和介电损耗等温线的进一步分析,揭示了弛豫时间和离子电导率之间的耦合行为。该实验体系可作为设计高性能聚合物共混固体电解质的模型体系,以获得良好的力学性能和优异的离子电导率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信