Reversible Bimetallic Inhibition to Modulate Selectivity During Catalysis

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Emmanuel Serrano-Díez, Alejandra Pita-Milleiro, Jesús Rangel-García, Juan J. Moreno, Marta Roselló-Merino, Jesús Campos
{"title":"Reversible Bimetallic Inhibition to Modulate Selectivity During Catalysis","authors":"Emmanuel Serrano-Díez, Alejandra Pita-Milleiro, Jesús Rangel-García, Juan J. Moreno, Marta Roselló-Merino, Jesús Campos","doi":"10.1021/jacs.4c15359","DOIUrl":null,"url":null,"abstract":"Bimetallic complexes have demonstrated a great ability to enhance the activity of monometallic systems for bond activation and catalysis. In this work, we explore the opposite approach: using a second metal to passivate the activity of another by reversible bimetallic inhibition. To do so we have synthesized a family of nine electrophilic gold complexes of formula Au(PR<sub>3</sub>)(NTf<sub>2</sub>) ([NTf<sub>2</sub>]<sup>−</sup> = [N(SO<sub>2</sub>CF<sub>3</sub>)<sub>2</sub>]<sup>−</sup>) that can act as inhibitors in the semihydrogenation of terminal and internal alkynes catalyzed by the iconic iridium Vaska complex IrCl(CO)(PPh<sub>3</sub>)<sub>2</sub>. This behavior parallels the well-known passivation effect of lead over palladium in the heterogeneous Lindlard catalyst. Most gold fragments, except for the most hindered, form metal-only Lewis pairs upon combination with iridium, which have been fully characterized and exhibit distinct dative Ir → Au bonds. When applied to alkyne hydrogenation, these bimetallic structures have a clear tendency toward olefin formation, while the monometallic catalyst unselectively leads to overreduction products. Our computational studies not only provide a feasible mechanism for the Ir-only system, but also evince the active role of gold in passivating iridium by reversibly forming heterobimetallic structures that lead to enhanced selectivity.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"32 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c15359","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bimetallic complexes have demonstrated a great ability to enhance the activity of monometallic systems for bond activation and catalysis. In this work, we explore the opposite approach: using a second metal to passivate the activity of another by reversible bimetallic inhibition. To do so we have synthesized a family of nine electrophilic gold complexes of formula Au(PR3)(NTf2) ([NTf2] = [N(SO2CF3)2]) that can act as inhibitors in the semihydrogenation of terminal and internal alkynes catalyzed by the iconic iridium Vaska complex IrCl(CO)(PPh3)2. This behavior parallels the well-known passivation effect of lead over palladium in the heterogeneous Lindlard catalyst. Most gold fragments, except for the most hindered, form metal-only Lewis pairs upon combination with iridium, which have been fully characterized and exhibit distinct dative Ir → Au bonds. When applied to alkyne hydrogenation, these bimetallic structures have a clear tendency toward olefin formation, while the monometallic catalyst unselectively leads to overreduction products. Our computational studies not only provide a feasible mechanism for the Ir-only system, but also evince the active role of gold in passivating iridium by reversibly forming heterobimetallic structures that lead to enhanced selectivity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信