AttenhERG: a reliable and interpretable graph neural network framework for predicting hERG channel blockers

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tianbiao Yang, Xiaoyu Ding, Elizabeth McMichael, Frank W. Pun, Alex Aliper, Feng Ren, Alex Zhavoronkov, Xiao Ding
{"title":"AttenhERG: a reliable and interpretable graph neural network framework for predicting hERG channel blockers","authors":"Tianbiao Yang,&nbsp;Xiaoyu Ding,&nbsp;Elizabeth McMichael,&nbsp;Frank W. Pun,&nbsp;Alex Aliper,&nbsp;Feng Ren,&nbsp;Alex Zhavoronkov,&nbsp;Xiao Ding","doi":"10.1186/s13321-024-00940-y","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches. In this study, we introduce AttenhERG, a novel graph neural network framework designed to predict hERG channel blockers reliably and interpretably. AttenhERG demonstrates improved performance compared to existing methods with an AUROC of 0.835, showcasing its efficacy in accurately predicting hERG activity across diverse datasets. Additionally, uncertainty evaluation analysis reveals the model's reliability, enhancing its utility in drug discovery and safety assessment. Case studies illustrate the practical application of AttenhERG in optimizing compounds for hERG toxicity, highlighting its potential in rational drug design.</p><p><b>Scientific contribution</b></p><p>AttenhERG is a breakthrough framework that significantly improves the interpretability and accuracy of predicting hERG channel blockers. By integrating uncertainty estimation, AttenhERG demonstrates superior reliability compared to benchmark models. Two case studies, involving APH1A and NMT1 inhibitors, further emphasize AttenhERG's practical application in compound optimization.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00940-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00940-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches. In this study, we introduce AttenhERG, a novel graph neural network framework designed to predict hERG channel blockers reliably and interpretably. AttenhERG demonstrates improved performance compared to existing methods with an AUROC of 0.835, showcasing its efficacy in accurately predicting hERG activity across diverse datasets. Additionally, uncertainty evaluation analysis reveals the model's reliability, enhancing its utility in drug discovery and safety assessment. Case studies illustrate the practical application of AttenhERG in optimizing compounds for hERG toxicity, highlighting its potential in rational drug design.

Scientific contribution

AttenhERG is a breakthrough framework that significantly improves the interpretability and accuracy of predicting hERG channel blockers. By integrating uncertainty estimation, AttenhERG demonstrates superior reliability compared to benchmark models. Two case studies, involving APH1A and NMT1 inhibitors, further emphasize AttenhERG's practical application in compound optimization.

一个可靠和可解释的图神经网络框架,用于预测hERG通道阻滞剂
心脏毒性,特别是药物引起的心律失常,是药物开发中的一个重大挑战,这突出了早期预测人类乙醚-a-go-go相关基因(hERG)毒性的重要性。hERG编码心脏钾通道的成孔亚基。传统的方法既昂贵又费时,需要开发计算方法。在本研究中,我们引入了一种新的图神经网络框架AttenhERG,旨在可靠且可解释地预测hERG通道阻滞剂。与现有方法相比,AttenhERG的AUROC为0.835,显示了其在不同数据集上准确预测hERG活性的有效性。通过不确定度评价分析,揭示了模型的可靠性,提高了模型在药物研发和安全性评价中的实用性。案例研究说明了AttenhERG在优化hERG毒性化合物方面的实际应用,突出了其在合理药物设计方面的潜力。AttenhERG是一个突破性的框架,显著提高了hERG通道阻断剂预测的可解释性和准确性。通过整合不确定性估计,与基准模型相比,AttenhERG显示出更高的可靠性。两个涉及APH1A和NMT1抑制剂的案例研究进一步强调了AttenhERG在化合物优化中的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信