AttenhERG: a reliable and interpretable graph neural network framework for predicting hERG channel blockers

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tianbiao Yang, Xiaoyu Ding, Elizabeth McMichael, Frank W. Pun, Alex Aliper, Feng Ren, Alex Zhavoronkov, Xiao Ding
{"title":"AttenhERG: a reliable and interpretable graph neural network framework for predicting hERG channel blockers","authors":"Tianbiao Yang,&nbsp;Xiaoyu Ding,&nbsp;Elizabeth McMichael,&nbsp;Frank W. Pun,&nbsp;Alex Aliper,&nbsp;Feng Ren,&nbsp;Alex Zhavoronkov,&nbsp;Xiao Ding","doi":"10.1186/s13321-024-00940-y","DOIUrl":null,"url":null,"abstract":"<div><p>Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches. In this study, we introduce AttenhERG, a novel graph neural network framework designed to predict hERG channel blockers reliably and interpretably. AttenhERG demonstrates improved performance compared to existing methods with an AUROC of 0.835, showcasing its efficacy in accurately predicting hERG activity across diverse datasets. Additionally, uncertainty evaluation analysis reveals the model's reliability, enhancing its utility in drug discovery and safety assessment. Case studies illustrate the practical application of AttenhERG in optimizing compounds for hERG toxicity, highlighting its potential in rational drug design.</p><p><b>Scientific contribution</b></p><p>AttenhERG is a breakthrough framework that significantly improves the interpretability and accuracy of predicting hERG channel blockers. By integrating uncertainty estimation, AttenhERG demonstrates superior reliability compared to benchmark models. Two case studies, involving APH1A and NMT1 inhibitors, further emphasize AttenhERG's practical application in compound optimization.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00940-y","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00940-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiotoxicity, particularly drug-induced arrhythmias, poses a significant challenge in drug development, highlighting the importance of early-stage prediction of human ether-a-go-go-related gene (hERG) toxicity. hERG encodes the pore-forming subunit of the cardiac potassium channel. Traditional methods are both costly and time-intensive, necessitating the development of computational approaches. In this study, we introduce AttenhERG, a novel graph neural network framework designed to predict hERG channel blockers reliably and interpretably. AttenhERG demonstrates improved performance compared to existing methods with an AUROC of 0.835, showcasing its efficacy in accurately predicting hERG activity across diverse datasets. Additionally, uncertainty evaluation analysis reveals the model's reliability, enhancing its utility in drug discovery and safety assessment. Case studies illustrate the practical application of AttenhERG in optimizing compounds for hERG toxicity, highlighting its potential in rational drug design.

Scientific contribution

AttenhERG is a breakthrough framework that significantly improves the interpretability and accuracy of predicting hERG channel blockers. By integrating uncertainty estimation, AttenhERG demonstrates superior reliability compared to benchmark models. Two case studies, involving APH1A and NMT1 inhibitors, further emphasize AttenhERG's practical application in compound optimization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信