Ion pairing in aqueous tetramethylammonium--acetate solutions by neutron scattering and molecular dynamics simulations

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Ngoc Lan Le Nguyen, Ondrej Tichacek, Pavel Jungwirth, Hector Martinez-Seara, Phil Mason, Elise Duboué-Dijon
{"title":"Ion pairing in aqueous tetramethylammonium--acetate solutions by neutron scattering and molecular dynamics simulations","authors":"Ngoc Lan Le Nguyen, Ondrej Tichacek, Pavel Jungwirth, Hector Martinez-Seara, Phil Mason, Elise Duboué-Dijon","doi":"10.1039/d4cp04312j","DOIUrl":null,"url":null,"abstract":"Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in trimethylated lysine residues, which modulate histone-DNA interactions and impact epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force field and ab initio molecular dynamics (MD) simulations. Neutron diffraction with isotopic substitution reveals specific ion pairing signatures between TMA and acetate, with simulations providing a detailed interpretation of the ion pairing structures. Force fields, notably CHARMM36 with the electronic continuum correction (ECC) (by a factor of 0.85) and AMBER99SB, capture essential pairing characteristics, but only revPBE-based ab initio MD simulations accurately model specific experimental features such as the low Q peak intensity in reciprocal space. Our study delivers a refined molecular model of TMA--carboxylate interactions, guiding the selection of force fields for complex biological systems where such interactions are of a significant importance.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"60 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04312j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tetramethylammonium (TMA) is a ubiquitous cationic motif in biochemistry, found in the charged choline headgroup of membrane phospholipids and in trimethylated lysine residues, which modulate histone-DNA interactions and impact epigenetic mechanisms. TMA interactions with anionic species, particularly carboxylate groups of amino acid residues and extracellular sugars, are of substantial biological relevance, as these interactions mediate a wide range of cellular processes. This study investigates the molecular interactions between TMA and acetate, representing carboxylate-containing groups, using neutron scattering experiments complemented by force field and ab initio molecular dynamics (MD) simulations. Neutron diffraction with isotopic substitution reveals specific ion pairing signatures between TMA and acetate, with simulations providing a detailed interpretation of the ion pairing structures. Force fields, notably CHARMM36 with the electronic continuum correction (ECC) (by a factor of 0.85) and AMBER99SB, capture essential pairing characteristics, but only revPBE-based ab initio MD simulations accurately model specific experimental features such as the low Q peak intensity in reciprocal space. Our study delivers a refined molecular model of TMA--carboxylate interactions, guiding the selection of force fields for complex biological systems where such interactions are of a significant importance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信