A blockchain-enabled horizontal federated learning system for fuzzy invasion detection in maintaining space security

IF 10.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Y.P. Tsang, C.H. Wu, W.H. Ip, K.L. Yung
{"title":"A blockchain-enabled horizontal federated learning system for fuzzy invasion detection in maintaining space security","authors":"Y.P. Tsang, C.H. Wu, W.H. Ip, K.L. Yung","doi":"10.1016/j.jii.2024.100745","DOIUrl":null,"url":null,"abstract":"Recent advances in Industry 4.0 technologies drive robotic objects' decentralisation and autonomous intelligence, raising emerging space security concerns, specifically invasion detection. Existing physical detection methods, such as vision-based and radar-based techniques, are ineffective in detecting small-scale objects moving at low speeds. Therefore, it is worth investigating and leveraging the power of artificial intelligence to discover invasion patterns through space data analytics. Additionally, fuzzy modelling is needed for invasion detection to enhance the capability of handling data uncertainty and adaptability to evolving invasion patterns. This study proposes a Blockchain-Enabled Federated Fuzzy Invasion Detection System (BFFIDS) to address these challenges and establish real-time invasion detection capabilities for edge devices in the low earth orbit. The entire model training process is performed over the blockchain and horizontal federated learning scheme, securely reaching consensus in model updates. The system's effectiveness is examined through case analyses on a publicly available dataset. The results indicate that the proposed system can effectively maintain the desired invasion detection performance, with an average Area Under Curve (AUC) value of 0.99 across experimental runs. Utilising the blockchain-based federated learning process, the total size of transmitted data is reduced by 89.5 %, supporting the development of lightweight invasion detection applications. A closed-loop mechanism for continuously updating the space invasion detection model is established to achieve high space security.","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"33 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jii.2024.100745","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in Industry 4.0 technologies drive robotic objects' decentralisation and autonomous intelligence, raising emerging space security concerns, specifically invasion detection. Existing physical detection methods, such as vision-based and radar-based techniques, are ineffective in detecting small-scale objects moving at low speeds. Therefore, it is worth investigating and leveraging the power of artificial intelligence to discover invasion patterns through space data analytics. Additionally, fuzzy modelling is needed for invasion detection to enhance the capability of handling data uncertainty and adaptability to evolving invasion patterns. This study proposes a Blockchain-Enabled Federated Fuzzy Invasion Detection System (BFFIDS) to address these challenges and establish real-time invasion detection capabilities for edge devices in the low earth orbit. The entire model training process is performed over the blockchain and horizontal federated learning scheme, securely reaching consensus in model updates. The system's effectiveness is examined through case analyses on a publicly available dataset. The results indicate that the proposed system can effectively maintain the desired invasion detection performance, with an average Area Under Curve (AUC) value of 0.99 across experimental runs. Utilising the blockchain-based federated learning process, the total size of transmitted data is reduced by 89.5 %, supporting the development of lightweight invasion detection applications. A closed-loop mechanism for continuously updating the space invasion detection model is established to achieve high space security.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Industrial Information Integration
Journal of Industrial Information Integration Decision Sciences-Information Systems and Management
CiteScore
22.30
自引率
13.40%
发文量
100
期刊介绍: The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers. The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信