Adam Smith, Maria Mylova, Philippe Brax, Carsten van de Bruck, C.P. Burgess and Anne-Christine Davis
{"title":"CMB implications of multi-field axio-dilaton cosmology","authors":"Adam Smith, Maria Mylova, Philippe Brax, Carsten van de Bruck, C.P. Burgess and Anne-Christine Davis","doi":"10.1088/1475-7516/2024/12/058","DOIUrl":null,"url":null,"abstract":"Axio-dilaton models are among the simplest scalar-tensor theories that contain the two-derivative interactions that naturally compete at low energies with the two-derivative interactions of General Relativity. Such models are well-motivated as the low energy fields arising from string theory compactification. We summarize these motivations and compute their cosmological evolution, in which the dilaton acts as dark energy and its evolution provides a framework for dynamically evolving particle masses. The derivative axion-dilaton couplings play an important role in the success of these cosmologies. We derive the equations for fluctuations needed to study their implications for the CMB anisotropy, matter spectra and structure growth. We use a modified Boltzmann code to study in detail four benchmark parameter choices, including the vanilla Yoga model, and identify couplings that give viable cosmologies, including some with surprisingly large matter-scalar interactions. The axion has negligible potential for most of the cosmologies we consider but we also examine a simplified model for which the axion potential plays a role, using axion-matter couplings motivated by phenomenological screening considerations. We find such choices can also lead to viable cosmologies.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"112 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/12/058","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Axio-dilaton models are among the simplest scalar-tensor theories that contain the two-derivative interactions that naturally compete at low energies with the two-derivative interactions of General Relativity. Such models are well-motivated as the low energy fields arising from string theory compactification. We summarize these motivations and compute their cosmological evolution, in which the dilaton acts as dark energy and its evolution provides a framework for dynamically evolving particle masses. The derivative axion-dilaton couplings play an important role in the success of these cosmologies. We derive the equations for fluctuations needed to study their implications for the CMB anisotropy, matter spectra and structure growth. We use a modified Boltzmann code to study in detail four benchmark parameter choices, including the vanilla Yoga model, and identify couplings that give viable cosmologies, including some with surprisingly large matter-scalar interactions. The axion has negligible potential for most of the cosmologies we consider but we also examine a simplified model for which the axion potential plays a role, using axion-matter couplings motivated by phenomenological screening considerations. We find such choices can also lead to viable cosmologies.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.