A secure routing and malicious node detection in mobile Ad hoc network using trust value evaluation with improved XGBoost mechanism

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Geetika Dhand, Meena Rao, Parul Chaudhary, Kavita Sheoran
{"title":"A secure routing and malicious node detection in mobile Ad hoc network using trust value evaluation with improved XGBoost mechanism","authors":"Geetika Dhand, Meena Rao, Parul Chaudhary, Kavita Sheoran","doi":"10.1016/j.jnca.2024.104093","DOIUrl":null,"url":null,"abstract":"Mobile ad hoc networks (MANETs) are beneficial in a wide range of sectors because of their rapid network creation capabilities. If mobile nodes collaborate and have mutual trust, the network can function properly. Routing becomes more difficult, and vulnerabilities are exposed more quickly as a result of flexible network features and frequent relationship flaws induced by node movement. This paper proposes a method for evaluating trust nodes using direct trust values, indirect trust values, and comprehensive trust values. Then, evaluating the trust value, the network's malicious and non-malicious nodes are identified using the Improved Extreme Gradient Boosting (XGBoost) algorithm. From the detected malicious nodes, the cluster head is chosen to ensure effective data transmission. Finally, the optimal routes are chosen using a novel Enhanced Cat Swarm-assisted Optimized Link State Routing Protocol (ECSO OLSRP). Furthermore, the Cat Swarm Optimization (CSO) algorithm determines the ideal route path based on characteristics such as node stability degree and connection stability degree. Because the proposed technique provides secure data transmission, node path setup, and node efficiency evaluation, it can maintain network performance even in the presence of several hostile nodes. The performance of the proposed trust-based approach security routing technique in terms of packet delivery ratio of nodes (0.47), end-to-end delay time of nodes (0.06), network throughput of nodes (1852.22), and control overhead of nodes (7.41).","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"1 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jnca.2024.104093","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile ad hoc networks (MANETs) are beneficial in a wide range of sectors because of their rapid network creation capabilities. If mobile nodes collaborate and have mutual trust, the network can function properly. Routing becomes more difficult, and vulnerabilities are exposed more quickly as a result of flexible network features and frequent relationship flaws induced by node movement. This paper proposes a method for evaluating trust nodes using direct trust values, indirect trust values, and comprehensive trust values. Then, evaluating the trust value, the network's malicious and non-malicious nodes are identified using the Improved Extreme Gradient Boosting (XGBoost) algorithm. From the detected malicious nodes, the cluster head is chosen to ensure effective data transmission. Finally, the optimal routes are chosen using a novel Enhanced Cat Swarm-assisted Optimized Link State Routing Protocol (ECSO OLSRP). Furthermore, the Cat Swarm Optimization (CSO) algorithm determines the ideal route path based on characteristics such as node stability degree and connection stability degree. Because the proposed technique provides secure data transmission, node path setup, and node efficiency evaluation, it can maintain network performance even in the presence of several hostile nodes. The performance of the proposed trust-based approach security routing technique in terms of packet delivery ratio of nodes (0.47), end-to-end delay time of nodes (0.06), network throughput of nodes (1852.22), and control overhead of nodes (7.41).
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信