Yadong Zhang, Huixiang Zhang, Yi Yang, Wen Sun, Haibin Zhang, Yaru Fu
{"title":"Adaptive differential privacy in asynchronous federated learning for aerial-aided edge computing","authors":"Yadong Zhang, Huixiang Zhang, Yi Yang, Wen Sun, Haibin Zhang, Yaru Fu","doi":"10.1016/j.jnca.2024.104087","DOIUrl":null,"url":null,"abstract":"The integration of aerial-aided edge computing and federated learning (FL) is expected to completely change the way data is collected and utilized in edge computing scenarios, while effectively addressing the issues of data privacy protection and data distribution in this scenario. However, in the face of the challenge of device heterogeneity at the edge computing systems, most current synchronous federated learning approaches suffer from low efficiency because of the straggler effect. This issue can be significantly mitigated by adopting Asynchronous Federated Learning (AFL). Despite the potential benefits, AFL remains under-explored, posing a significant hurdle to optimizing the utility of privacy-enhanced AFL. To address this, we introduce adaptive differential privacy algorithms aimed at enhancing the balance between model utility and privacy in AFL. Our approach begins by defining two frameworks for privacy-enhanced AFL, taking into account various factors relevant to different adversary models. Through in-depth analysis of the model convergence in AFL, we demonstrate how differential privacy can be adaptively achieved while maintaining high utility. Extensive experiments on diverse training models and benchmark datasets showcase that our proposed algorithms outperform existing benchmark methods in terms of overall performance, enhancing test accuracy under similar privacy constraints and achieving faster convergence rates.","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"128 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jnca.2024.104087","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of aerial-aided edge computing and federated learning (FL) is expected to completely change the way data is collected and utilized in edge computing scenarios, while effectively addressing the issues of data privacy protection and data distribution in this scenario. However, in the face of the challenge of device heterogeneity at the edge computing systems, most current synchronous federated learning approaches suffer from low efficiency because of the straggler effect. This issue can be significantly mitigated by adopting Asynchronous Federated Learning (AFL). Despite the potential benefits, AFL remains under-explored, posing a significant hurdle to optimizing the utility of privacy-enhanced AFL. To address this, we introduce adaptive differential privacy algorithms aimed at enhancing the balance between model utility and privacy in AFL. Our approach begins by defining two frameworks for privacy-enhanced AFL, taking into account various factors relevant to different adversary models. Through in-depth analysis of the model convergence in AFL, we demonstrate how differential privacy can be adaptively achieved while maintaining high utility. Extensive experiments on diverse training models and benchmark datasets showcase that our proposed algorithms outperform existing benchmark methods in terms of overall performance, enhancing test accuracy under similar privacy constraints and achieving faster convergence rates.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.