Adaptive differential privacy in asynchronous federated learning for aerial-aided edge computing

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yadong Zhang, Huixiang Zhang, Yi Yang, Wen Sun, Haibin Zhang, Yaru Fu
{"title":"Adaptive differential privacy in asynchronous federated learning for aerial-aided edge computing","authors":"Yadong Zhang, Huixiang Zhang, Yi Yang, Wen Sun, Haibin Zhang, Yaru Fu","doi":"10.1016/j.jnca.2024.104087","DOIUrl":null,"url":null,"abstract":"The integration of aerial-aided edge computing and federated learning (FL) is expected to completely change the way data is collected and utilized in edge computing scenarios, while effectively addressing the issues of data privacy protection and data distribution in this scenario. However, in the face of the challenge of device heterogeneity at the edge computing systems, most current synchronous federated learning approaches suffer from low efficiency because of the straggler effect. This issue can be significantly mitigated by adopting Asynchronous Federated Learning (AFL). Despite the potential benefits, AFL remains under-explored, posing a significant hurdle to optimizing the utility of privacy-enhanced AFL. To address this, we introduce adaptive differential privacy algorithms aimed at enhancing the balance between model utility and privacy in AFL. Our approach begins by defining two frameworks for privacy-enhanced AFL, taking into account various factors relevant to different adversary models. Through in-depth analysis of the model convergence in AFL, we demonstrate how differential privacy can be adaptively achieved while maintaining high utility. Extensive experiments on diverse training models and benchmark datasets showcase that our proposed algorithms outperform existing benchmark methods in terms of overall performance, enhancing test accuracy under similar privacy constraints and achieving faster convergence rates.","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"128 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jnca.2024.104087","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of aerial-aided edge computing and federated learning (FL) is expected to completely change the way data is collected and utilized in edge computing scenarios, while effectively addressing the issues of data privacy protection and data distribution in this scenario. However, in the face of the challenge of device heterogeneity at the edge computing systems, most current synchronous federated learning approaches suffer from low efficiency because of the straggler effect. This issue can be significantly mitigated by adopting Asynchronous Federated Learning (AFL). Despite the potential benefits, AFL remains under-explored, posing a significant hurdle to optimizing the utility of privacy-enhanced AFL. To address this, we introduce adaptive differential privacy algorithms aimed at enhancing the balance between model utility and privacy in AFL. Our approach begins by defining two frameworks for privacy-enhanced AFL, taking into account various factors relevant to different adversary models. Through in-depth analysis of the model convergence in AFL, we demonstrate how differential privacy can be adaptively achieved while maintaining high utility. Extensive experiments on diverse training models and benchmark datasets showcase that our proposed algorithms outperform existing benchmark methods in terms of overall performance, enhancing test accuracy under similar privacy constraints and achieving faster convergence rates.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信