{"title":"Adaptive fusion of dual-view for grading prostate cancer.","authors":"Yaolin He, Bowen Li, Ruimin He, Guangming Fu, Dan Sun, Dongyong Shan, Zijian Zhang","doi":"10.1016/j.compmedimag.2024.102479","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate preoperative grading of prostate cancer is crucial for assisted diagnosis. Multi-parametric magnetic resonance imaging (MRI) is a commonly used non-invasive approach, however, the interpretation of MRI images is still subject to significant subjectivity due to variations in physicians' expertise and experience. To achieve accurate, non-invasive, and efficient grading of prostate cancer, this paper proposes a deep learning method that adaptively fuses dual-view MRI images. Specifically, a dual-view adaptive fusion model is designed. The model employs encoders to extract embedded features from two MRI sequences: T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC). The model reconstructs the original input images using the embedded features and adopts a cross-embedding fusion module to adaptively fuse the embedded features from the two views. Adaptive fusion refers to dynamically adjusting the fusion weights of the features from the two views according to different input samples, thereby fully utilizing complementary information. Furthermore, the model adaptively weights the prediction results from the two views based on uncertainty estimation, further enhancing the grading performance. To verify the importance of effective multi-view fusion for prostate cancer grading, extensive experiments are designed. The experiments evaluate the performance of single-view models, dual-view models, and state-of-the-art multi-view fusion algorithms. The results demonstrate that the proposed dual-view adaptive fusion method achieves the best grading performance, confirming its effectiveness for assisted grading diagnosis of prostate cancer. This study provides a novel deep learning solution for preoperative grading of prostate cancer, which has the potential to assist clinical physicians in making more accurate diagnostic decisions and has significant clinical application value.</p>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"119 ","pages":"102479"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compmedimag.2024.102479","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate preoperative grading of prostate cancer is crucial for assisted diagnosis. Multi-parametric magnetic resonance imaging (MRI) is a commonly used non-invasive approach, however, the interpretation of MRI images is still subject to significant subjectivity due to variations in physicians' expertise and experience. To achieve accurate, non-invasive, and efficient grading of prostate cancer, this paper proposes a deep learning method that adaptively fuses dual-view MRI images. Specifically, a dual-view adaptive fusion model is designed. The model employs encoders to extract embedded features from two MRI sequences: T2-weighted imaging (T2WI) and apparent diffusion coefficient (ADC). The model reconstructs the original input images using the embedded features and adopts a cross-embedding fusion module to adaptively fuse the embedded features from the two views. Adaptive fusion refers to dynamically adjusting the fusion weights of the features from the two views according to different input samples, thereby fully utilizing complementary information. Furthermore, the model adaptively weights the prediction results from the two views based on uncertainty estimation, further enhancing the grading performance. To verify the importance of effective multi-view fusion for prostate cancer grading, extensive experiments are designed. The experiments evaluate the performance of single-view models, dual-view models, and state-of-the-art multi-view fusion algorithms. The results demonstrate that the proposed dual-view adaptive fusion method achieves the best grading performance, confirming its effectiveness for assisted grading diagnosis of prostate cancer. This study provides a novel deep learning solution for preoperative grading of prostate cancer, which has the potential to assist clinical physicians in making more accurate diagnostic decisions and has significant clinical application value.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.