Min Yang, Zhenzhi Qin, Yueke Lin, Dapeng Ma, Caiyu Sun, Haocheng Xuan, Xiuling Cui, Wei Ma, Xinyi Zhu, Lihui Han
{"title":"HDAC10 switches NLRP3 modification from acetylation to ubiquitination and attenuates acute inflammatory diseases.","authors":"Min Yang, Zhenzhi Qin, Yueke Lin, Dapeng Ma, Caiyu Sun, Haocheng Xuan, Xiuling Cui, Wei Ma, Xinyi Zhu, Lihui Han","doi":"10.1186/s12964-024-01992-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The NOD-like receptor protein (NLRP)3 inflammasome is at the signaling hub center to instigate inflammation in response to pathogen infection or oxidative stress, and its tight control is pivotal for immune defense against infection while avoiding parallel intensive inflammatory tissue injury. Acetylation of NLRP3 is critical for the full activation of NLRP3 inflammasome, while the precise regulation of the acetylation and deacetylation circuit of NLRP3 protein remained to be fully understood.</p><p><strong>Methods: </strong>The interaction between histone deacetylase 10 (HDAC10) and NLRP3 was detected by immunoprecipitation and western blot in the HDAC10 and NLRP3 overexpressing cells. The role of HDAC10 in NLRP3 inflammasome activation was measured by immunofluorescence, real-time PCR and immunoblotting assay in peritoneal macrophages and bone marrow-derived macrophages after the stimulation with LPS and ATP. To investigate the role of HDAC10 in NLRP3-involved inflammatory diseases, the Hdac10 knockout (Hdac10<sup>-/-</sup>) mice were used to construct the LPS-induced acute endotoxemia model and folic acid-induced acute tubular necrosis model. Tissue injury level was analyzed by hematoxylin and eosin staining, and the serum level of IL-1β was measured by enzyme-linked immunosorbent assay (ELISA). The conservative analysis and immunoprecipitation assay were performed to screen the precise catalytic site regulated by HDAC10 responsible for the switching from the acetylation to ubiquitination of NLRP3.</p><p><strong>Results: </strong>Here we demonstrated that HDAC10 directly interacted with NLRP3 and induced the deacetylation of NLRP3, thus leading to the inhibition of NLRP3 inflammasome and alleviation of NLRP3 inflammasome-mediated acute inflammatory injury. Further investigation demonstrated that HDAC10 directly induced the deacetylation of NLRP3 at K496 residue, thus switching NLRP3 acetylation to the ubiquitination modification, resulting in the proteasomal degradation of NLRP3 protein. Thus, this study identified HDAC10 as a new eraser for NLRP3 acetylation, and HDAC10 attenuated NLRP3 inflammasome involved acute inflammation via directly deacetylating NLRP3.</p><p><strong>Conclusions: </strong>This study indicated that HDAC10 switched NLRP3 modification from acetylation to ubiquitination and attenuated acute inflammatory diseases, thus it provided a potential therapeutic strategy for NLRP3 inflammasome-associated diseases by targeting HDAC10.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"615"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01992-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The NOD-like receptor protein (NLRP)3 inflammasome is at the signaling hub center to instigate inflammation in response to pathogen infection or oxidative stress, and its tight control is pivotal for immune defense against infection while avoiding parallel intensive inflammatory tissue injury. Acetylation of NLRP3 is critical for the full activation of NLRP3 inflammasome, while the precise regulation of the acetylation and deacetylation circuit of NLRP3 protein remained to be fully understood.
Methods: The interaction between histone deacetylase 10 (HDAC10) and NLRP3 was detected by immunoprecipitation and western blot in the HDAC10 and NLRP3 overexpressing cells. The role of HDAC10 in NLRP3 inflammasome activation was measured by immunofluorescence, real-time PCR and immunoblotting assay in peritoneal macrophages and bone marrow-derived macrophages after the stimulation with LPS and ATP. To investigate the role of HDAC10 in NLRP3-involved inflammatory diseases, the Hdac10 knockout (Hdac10-/-) mice were used to construct the LPS-induced acute endotoxemia model and folic acid-induced acute tubular necrosis model. Tissue injury level was analyzed by hematoxylin and eosin staining, and the serum level of IL-1β was measured by enzyme-linked immunosorbent assay (ELISA). The conservative analysis and immunoprecipitation assay were performed to screen the precise catalytic site regulated by HDAC10 responsible for the switching from the acetylation to ubiquitination of NLRP3.
Results: Here we demonstrated that HDAC10 directly interacted with NLRP3 and induced the deacetylation of NLRP3, thus leading to the inhibition of NLRP3 inflammasome and alleviation of NLRP3 inflammasome-mediated acute inflammatory injury. Further investigation demonstrated that HDAC10 directly induced the deacetylation of NLRP3 at K496 residue, thus switching NLRP3 acetylation to the ubiquitination modification, resulting in the proteasomal degradation of NLRP3 protein. Thus, this study identified HDAC10 as a new eraser for NLRP3 acetylation, and HDAC10 attenuated NLRP3 inflammasome involved acute inflammation via directly deacetylating NLRP3.
Conclusions: This study indicated that HDAC10 switched NLRP3 modification from acetylation to ubiquitination and attenuated acute inflammatory diseases, thus it provided a potential therapeutic strategy for NLRP3 inflammasome-associated diseases by targeting HDAC10.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.