Exosomal ANXA2 facilitates ovarian cancer peritoneal metastasis by activating peritoneal mesothelial cells through binding with TLR2.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Jingni Zhang, Hongmei Liu, Qiulei Wu, Tong Liu, Xiaoli Liu, Jing Cai, Xiaoqing Yi, Zehua Wang, Lingling Gao
{"title":"Exosomal ANXA2 facilitates ovarian cancer peritoneal metastasis by activating peritoneal mesothelial cells through binding with TLR2.","authors":"Jingni Zhang, Hongmei Liu, Qiulei Wu, Tong Liu, Xiaoli Liu, Jing Cai, Xiaoqing Yi, Zehua Wang, Lingling Gao","doi":"10.1186/s12964-024-01987-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Peritoneal dissemination of ovarian cancer (OvCa) can be largely attributed to the formation of a metastatic microenvironment driven by tumoral exosomes. Here, we aimed to elucidate the mechanisms through which exosomal annexin A2 (ANXA2) derived from OvCa cells induces an HPMC phenotypic shift in favour of peritoneal metastasis.</p><p><strong>Methods: </strong>Immunohistochemistry and orthotopic and intraperitoneal OvCa xenograft mouse models were used to clarify the relationship between tumour ANXA2 expression and peritoneal metastasis. Exosomes were isolated from OvCa cell lines via ultracentrifugation. Functional experiments on cell proliferation and motility, and western blot were performed to investigate the activation of HPMCs and its impact on tumour cell in vitro. High-throughput transcriptional sequencing and rescue experiments in which ANXA2 inhibitor (LCKLSL) or the toll-like receptor 2 (TLR2) inhibitor (C29) was used to co-culture the HPMCs with exosome were employed to identify the crucial functional molecules through which exosomal ANXA2 activates HPMCs. The impact of exosomal ANXA2-activated HPMCs on tumour progression was assessed via functional experiments.</p><p><strong>Results: </strong>Primary OvCa samples with high ANXA2 expression exhibited a stronger tendency to metastasize to the abdominal cavity. Tumoral ANXA2 promoted OvCa peritoneal metastasis through the secretion of exosomes carrying ANXA2. ANXA2-loaded exosomes activated HPMCs through exosomal ANXA2 binding to TLR2, shifting the phenotype of HPMCs towards mesenchymal cells, increasing their migration and invasion capacities, and elevating the expression of lipocalin 2 (LCN2). High LCN2 expression in HPMCs promoted OvCa cell adhesion, proliferation, motility, and lipid metabolism reprogramming.</p><p><strong>Conclusion: </strong>Exosomal ANXA2 secreted by tumour cells activates HPMCs and induces the expression of LCN2, which in turn promotes the peritoneal metastasis of OvCa.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"616"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01987-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Peritoneal dissemination of ovarian cancer (OvCa) can be largely attributed to the formation of a metastatic microenvironment driven by tumoral exosomes. Here, we aimed to elucidate the mechanisms through which exosomal annexin A2 (ANXA2) derived from OvCa cells induces an HPMC phenotypic shift in favour of peritoneal metastasis.

Methods: Immunohistochemistry and orthotopic and intraperitoneal OvCa xenograft mouse models were used to clarify the relationship between tumour ANXA2 expression and peritoneal metastasis. Exosomes were isolated from OvCa cell lines via ultracentrifugation. Functional experiments on cell proliferation and motility, and western blot were performed to investigate the activation of HPMCs and its impact on tumour cell in vitro. High-throughput transcriptional sequencing and rescue experiments in which ANXA2 inhibitor (LCKLSL) or the toll-like receptor 2 (TLR2) inhibitor (C29) was used to co-culture the HPMCs with exosome were employed to identify the crucial functional molecules through which exosomal ANXA2 activates HPMCs. The impact of exosomal ANXA2-activated HPMCs on tumour progression was assessed via functional experiments.

Results: Primary OvCa samples with high ANXA2 expression exhibited a stronger tendency to metastasize to the abdominal cavity. Tumoral ANXA2 promoted OvCa peritoneal metastasis through the secretion of exosomes carrying ANXA2. ANXA2-loaded exosomes activated HPMCs through exosomal ANXA2 binding to TLR2, shifting the phenotype of HPMCs towards mesenchymal cells, increasing their migration and invasion capacities, and elevating the expression of lipocalin 2 (LCN2). High LCN2 expression in HPMCs promoted OvCa cell adhesion, proliferation, motility, and lipid metabolism reprogramming.

Conclusion: Exosomal ANXA2 secreted by tumour cells activates HPMCs and induces the expression of LCN2, which in turn promotes the peritoneal metastasis of OvCa.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信