Bridging Wright-Fisher and Moran models.

IF 1.9 4区 数学 Q2 BIOLOGY
Arthur Alexandre, Alia Abbara, Cecilia Fruet, Claude Loverdo, Anne-Florence Bitbol
{"title":"Bridging Wright-Fisher and Moran models.","authors":"Arthur Alexandre, Alia Abbara, Cecilia Fruet, Claude Loverdo, Anne-Florence Bitbol","doi":"10.1016/j.jtbi.2024.112030","DOIUrl":null,"url":null,"abstract":"<p><p>The Wright-Fisher model and the Moran model are both widely used in population genetics. They describe the time evolution of the frequency of an allele in a well-mixed population with fixed size. We propose a simple and tractable model which bridges the Wright-Fisher and the Moran descriptions. We assume that a fixed fraction of the population is updated at each discrete time step. In this model, we determine the fixation probability of a mutant and its average fixation and extinction times, under the diffusion approximation. We further study the associated coalescent process, which converges to Kingman's coalescent, and we calculate effective population sizes. We generalize our model, first by taking into account fluctuating updated fractions or individual lifetimes, and then by incorporating selection on the lifetime as well as on the reproductive fitness.</p>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":" ","pages":"112030"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtbi.2024.112030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Wright-Fisher model and the Moran model are both widely used in population genetics. They describe the time evolution of the frequency of an allele in a well-mixed population with fixed size. We propose a simple and tractable model which bridges the Wright-Fisher and the Moran descriptions. We assume that a fixed fraction of the population is updated at each discrete time step. In this model, we determine the fixation probability of a mutant and its average fixation and extinction times, under the diffusion approximation. We further study the associated coalescent process, which converges to Kingman's coalescent, and we calculate effective population sizes. We generalize our model, first by taking into account fluctuating updated fractions or individual lifetimes, and then by incorporating selection on the lifetime as well as on the reproductive fitness.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
218
审稿时长
51 days
期刊介绍: The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including: • Brain and Neuroscience • Cancer Growth and Treatment • Cell Biology • Developmental Biology • Ecology • Evolution • Immunology, • Infectious and non-infectious Diseases, • Mathematical, Computational, Biophysical and Statistical Modeling • Microbiology, Molecular Biology, and Biochemistry • Networks and Complex Systems • Physiology • Pharmacodynamics • Animal Behavior and Game Theory Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信