Arthur Alexandre, Alia Abbara, Cecilia Fruet, Claude Loverdo, Anne-Florence Bitbol
{"title":"Bridging Wright-Fisher and Moran models.","authors":"Arthur Alexandre, Alia Abbara, Cecilia Fruet, Claude Loverdo, Anne-Florence Bitbol","doi":"10.1016/j.jtbi.2024.112030","DOIUrl":null,"url":null,"abstract":"<p><p>The Wright-Fisher model and the Moran model are both widely used in population genetics. They describe the time evolution of the frequency of an allele in a well-mixed population with fixed size. We propose a simple and tractable model which bridges the Wright-Fisher and the Moran descriptions. We assume that a fixed fraction of the population is updated at each discrete time step. In this model, we determine the fixation probability of a mutant and its average fixation and extinction times, under the diffusion approximation. We further study the associated coalescent process, which converges to Kingman's coalescent, and we calculate effective population sizes. We generalize our model, first by taking into account fluctuating updated fractions or individual lifetimes, and then by incorporating selection on the lifetime as well as on the reproductive fitness.</p>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":" ","pages":"112030"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtbi.2024.112030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Wright-Fisher model and the Moran model are both widely used in population genetics. They describe the time evolution of the frequency of an allele in a well-mixed population with fixed size. We propose a simple and tractable model which bridges the Wright-Fisher and the Moran descriptions. We assume that a fixed fraction of the population is updated at each discrete time step. In this model, we determine the fixation probability of a mutant and its average fixation and extinction times, under the diffusion approximation. We further study the associated coalescent process, which converges to Kingman's coalescent, and we calculate effective population sizes. We generalize our model, first by taking into account fluctuating updated fractions or individual lifetimes, and then by incorporating selection on the lifetime as well as on the reproductive fitness.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.