{"title":"A modular system to label endogenous presynaptic proteins using split fluorophores in C. elegans.","authors":"Mizuki Kurashina, Andrew W Snow, Kota Mizumoto","doi":"10.1093/genetics/iyae214","DOIUrl":null,"url":null,"abstract":"<p><p>Visualizing the subcellular localization of presynaptic proteins with fluorescent proteins is a powerful tool to dissect the genetic and molecular mechanisms underlying synapse formation and patterning in live animals. Here, we utilize split green and red fluorescent proteins to visualize the localization of endogenously expressed presynaptic proteins at a single neuron resolution in Caenorhabditis elegans. By using CRISPR/Cas9 genome editing, we generated a collection of C. elegans strains in which endogenously expressed presynaptic proteins (RAB-3/Rab3, SNG-1/Synaptogyrin, CLA-1/Piccolo, SYD-2/Liprin-α, UNC-10/RIM, RIMB-1/RIM-BP, and ELKS-1/ELKS) are tagged with tandem repeats of GFP11 and/or wrmScarlet11. We show that the expression of GFP1-10 and wrmScarlet1-10 under neuron-specific promoters can robustly label presynaptic proteins in different neuron types. We believe that the combination of our knock-in strains and GFP1-10 and wrmScarlet1-10 plasmids is a versatile modular system useful for neuroscientists to examine the localization of endogenous presynaptic proteins in any neuron type in C. elegans.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae214","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Visualizing the subcellular localization of presynaptic proteins with fluorescent proteins is a powerful tool to dissect the genetic and molecular mechanisms underlying synapse formation and patterning in live animals. Here, we utilize split green and red fluorescent proteins to visualize the localization of endogenously expressed presynaptic proteins at a single neuron resolution in Caenorhabditis elegans. By using CRISPR/Cas9 genome editing, we generated a collection of C. elegans strains in which endogenously expressed presynaptic proteins (RAB-3/Rab3, SNG-1/Synaptogyrin, CLA-1/Piccolo, SYD-2/Liprin-α, UNC-10/RIM, RIMB-1/RIM-BP, and ELKS-1/ELKS) are tagged with tandem repeats of GFP11 and/or wrmScarlet11. We show that the expression of GFP1-10 and wrmScarlet1-10 under neuron-specific promoters can robustly label presynaptic proteins in different neuron types. We believe that the combination of our knock-in strains and GFP1-10 and wrmScarlet1-10 plasmids is a versatile modular system useful for neuroscientists to examine the localization of endogenous presynaptic proteins in any neuron type in C. elegans.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.