Nadia Garibaldi , Roberta Besio , Valentina Pirota , Benedetta Albini , Giorgio Colombo , Pietro Galinetto , Filippo Doria , Alessandra Carriero , Antonella Forlino
{"title":"A novel chemical chaperone ameliorates osteoblast homeostasis and extracellular matrix in osteogenesis imperfecta","authors":"Nadia Garibaldi , Roberta Besio , Valentina Pirota , Benedetta Albini , Giorgio Colombo , Pietro Galinetto , Filippo Doria , Alessandra Carriero , Antonella Forlino","doi":"10.1016/j.lfs.2024.123320","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>Osteogenesis imperfecta (OI) is a collagen I-related heritable family of skeletal diseases associated to extreme bone fragility and deformity. Its classical forms are caused by dominant mutations in <em>COL1A1</em> and <em>COL1A2</em>, which encode for the protein α chains, and are characterized by impairment in collagen I structure, folding, and secretion. Mutant collagen I assembles in an altered extracellular matrix affecting mineralization and bone properties and partially accumulating inside the cells, leading to impaired trafficking and cellular stress. Recently, the chemical chaperone 4-phenylbutyrate (4-PBA) has been proposed as an innovative drug for OI based on its ability to restore intracellular homeostasis, stimulate secretion, and ameliorate collagen-producing cell functions, positively affecting bone properties. However, the limited half-life of the molecule represents a serious hurdle for its use.</div></div><div><h3>Materials and methods</h3><div>To efficiently target cellular stress as OI treatment, two new compounds were designed by molecular modelling based on the 4-PBA structure to increase its stability and its ability to implement protein secretion. The short butyryl fatty acid chain of 4-PBA was substituted with a nitro functional group or with a glycine, respectively. The latter, N-benzyl glycine (N-BG), showed the best docking score, less toxicity, and higher stability than 4-PBA.</div></div><div><h3>Key findings</h3><div>N-BG improved extracellular matrix quality and mineral content together with ameliorating OI cells' homeostasis by increasing ER-associated degradation pathway, reducing apoptosis, and stimulating protein secretion, thus facilitating intracellular clearance from accumulated misfolded proteins.</div></div><div><h3>Significance</h3><div>In conclusion, N-BG represents a novel potential available compound to target altered homeostasis in OI with the aim to ameliorate the disease phenotype.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"361 ","pages":"Article 123320"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002432052400910X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Osteogenesis imperfecta (OI) is a collagen I-related heritable family of skeletal diseases associated to extreme bone fragility and deformity. Its classical forms are caused by dominant mutations in COL1A1 and COL1A2, which encode for the protein α chains, and are characterized by impairment in collagen I structure, folding, and secretion. Mutant collagen I assembles in an altered extracellular matrix affecting mineralization and bone properties and partially accumulating inside the cells, leading to impaired trafficking and cellular stress. Recently, the chemical chaperone 4-phenylbutyrate (4-PBA) has been proposed as an innovative drug for OI based on its ability to restore intracellular homeostasis, stimulate secretion, and ameliorate collagen-producing cell functions, positively affecting bone properties. However, the limited half-life of the molecule represents a serious hurdle for its use.
Materials and methods
To efficiently target cellular stress as OI treatment, two new compounds were designed by molecular modelling based on the 4-PBA structure to increase its stability and its ability to implement protein secretion. The short butyryl fatty acid chain of 4-PBA was substituted with a nitro functional group or with a glycine, respectively. The latter, N-benzyl glycine (N-BG), showed the best docking score, less toxicity, and higher stability than 4-PBA.
Key findings
N-BG improved extracellular matrix quality and mineral content together with ameliorating OI cells' homeostasis by increasing ER-associated degradation pathway, reducing apoptosis, and stimulating protein secretion, thus facilitating intracellular clearance from accumulated misfolded proteins.
Significance
In conclusion, N-BG represents a novel potential available compound to target altered homeostasis in OI with the aim to ameliorate the disease phenotype.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.