Mechanistic insights into the selective targeting of P2X3 receptor by camlipixant antagonist.

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Trung Thach, KanagaVijayan Dhanabalan, Prajwal Prabhakarrao Nandekar, Seth Stauffer, Iring Heisler, Sarah Alvarado, Jonathan Snyder, Ramaswamy Subramanian
{"title":"Mechanistic insights into the selective targeting of P2X3 receptor by camlipixant antagonist.","authors":"Trung Thach, KanagaVijayan Dhanabalan, Prajwal Prabhakarrao Nandekar, Seth Stauffer, Iring Heisler, Sarah Alvarado, Jonathan Snyder, Ramaswamy Subramanian","doi":"10.1016/j.jbc.2024.108109","DOIUrl":null,"url":null,"abstract":"<p><p>ATP-activated P2X3 receptors play a pivotal role in chronic cough, affecting more than 10% of the population. Despite the challenges posed by the highly conserved structure of P2X receptors, efforts to develop selective drugs targeting P2X3 have led to the development of camlipixant, a potent, selective P2X3 antagonist. However, the mechanisms of receptor desensitization, ion permeation, and structural basis of camlipixant binding to P2X3 remain unclear. Here, we report a cryo-EM structure of camlipixant-bound P2X3, revealing a previously undiscovered selective drug-binding site in the receptor. Our findings also demonstrate that conformational changes in the upper-body domain, including the turret and camlipixant-binding pocket, play a critical role: turret opening facilitates P2X3 channel closure to a radius of 0.7 Å, hindering cation transfer, while turret closure leads to channel opening. Structural and functional studies combined with molecular dynamics simulations provide a comprehensive understanding of camlipixant's selective inhibition of P2X3, offering a foundation for future drug development targeting this receptor.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108109"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.108109","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

ATP-activated P2X3 receptors play a pivotal role in chronic cough, affecting more than 10% of the population. Despite the challenges posed by the highly conserved structure of P2X receptors, efforts to develop selective drugs targeting P2X3 have led to the development of camlipixant, a potent, selective P2X3 antagonist. However, the mechanisms of receptor desensitization, ion permeation, and structural basis of camlipixant binding to P2X3 remain unclear. Here, we report a cryo-EM structure of camlipixant-bound P2X3, revealing a previously undiscovered selective drug-binding site in the receptor. Our findings also demonstrate that conformational changes in the upper-body domain, including the turret and camlipixant-binding pocket, play a critical role: turret opening facilitates P2X3 channel closure to a radius of 0.7 Å, hindering cation transfer, while turret closure leads to channel opening. Structural and functional studies combined with molecular dynamics simulations provide a comprehensive understanding of camlipixant's selective inhibition of P2X3, offering a foundation for future drug development targeting this receptor.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信