{"title":"Analysis of electrical activities in a functional neuron with dual memristors.","authors":"Xinlin Song, Feifei Yang","doi":"10.1016/j.jtbi.2024.112034","DOIUrl":null,"url":null,"abstract":"<p><p>Neuron as a charged body, it is easily disturbed by the external electromagnetic field, which changes the electrical activities of the neurons. In fact, the interference of external electric or magnetic field is the process of energy injection of neurons, the injection of energy will redistribute the field energy inside the neurons, and the redistribution of energy will change the electrical activities of the neurons. Therefore, we design a neuron model with double memristors to explore the external electromagnetic field on the regulation of neural electrical activity. The dimensionless equations of the model with double memristors and its energy function are obtained based on the Kirchhoff's and the Helmholtz's theorems. The electrical activities of the neuron model under the external electromagnetic field distribution are researched by applying the nonlinear analysis methods, and the coherence resonance of the neuron is explored under the external noise electromagnetic field. The results indicate that the electrical activities of the model are controlled by the external electromagnetic field. This neuron model can be used to study the synchronization between magnetic field coupled or electric field coupled neurons.</p>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":" ","pages":"112034"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jtbi.2024.112034","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuron as a charged body, it is easily disturbed by the external electromagnetic field, which changes the electrical activities of the neurons. In fact, the interference of external electric or magnetic field is the process of energy injection of neurons, the injection of energy will redistribute the field energy inside the neurons, and the redistribution of energy will change the electrical activities of the neurons. Therefore, we design a neuron model with double memristors to explore the external electromagnetic field on the regulation of neural electrical activity. The dimensionless equations of the model with double memristors and its energy function are obtained based on the Kirchhoff's and the Helmholtz's theorems. The electrical activities of the neuron model under the external electromagnetic field distribution are researched by applying the nonlinear analysis methods, and the coherence resonance of the neuron is explored under the external noise electromagnetic field. The results indicate that the electrical activities of the model are controlled by the external electromagnetic field. This neuron model can be used to study the synchronization between magnetic field coupled or electric field coupled neurons.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.