Muhammad Shahzaib, Muhammad Muaz, Muhammad Hasnain Zubair, Masood Ur Rehman Kayani
{"title":"MiCK: a database of gut microbial genes linked with chemoresistance in cancer patients.","authors":"Muhammad Shahzaib, Muhammad Muaz, Muhammad Hasnain Zubair, Masood Ur Rehman Kayani","doi":"10.1093/database/baae124","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer remains a global health challenge, with significant morbidity and mortality rates. In 2020, cancer caused nearly 10 million deaths, making it the second leading cause of death worldwide. The emergence of chemoresistance has become a major hurdle in successfully treating cancer patients. Recently, human gut microbes have been recognized for their role in modulating drug efficacy through their metabolites, ultimately leading to chemoresistance. The currently available databases are limited to knowledge regarding the interactions between gut microbiome and drugs. However, a database containing the human gut microbial gene sequences, and their effect on the efficacy of chemotherapy for cancer patients has not yet been developed. To address this challenge, we present the Microbial Chemoresistance Knowledgebase (MiCK), a comprehensive database that catalogs microbial gene sequences associated with chemoresistance. MiCK contains 1.6 million sequences of 29 gene types linked to chemoresistance and drug metabolism, curated manually from recent literature and sequence databases. The database can support downstream analysis as it provides a user-friendly web interface for sequence search and download functionalities. MiCK aims to facilitate the understanding and mitigation of chemoresistance in cancers by serving as a valuable resource for researchers. Database URL: https://microbialchemreskb.com/.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae124","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer remains a global health challenge, with significant morbidity and mortality rates. In 2020, cancer caused nearly 10 million deaths, making it the second leading cause of death worldwide. The emergence of chemoresistance has become a major hurdle in successfully treating cancer patients. Recently, human gut microbes have been recognized for their role in modulating drug efficacy through their metabolites, ultimately leading to chemoresistance. The currently available databases are limited to knowledge regarding the interactions between gut microbiome and drugs. However, a database containing the human gut microbial gene sequences, and their effect on the efficacy of chemotherapy for cancer patients has not yet been developed. To address this challenge, we present the Microbial Chemoresistance Knowledgebase (MiCK), a comprehensive database that catalogs microbial gene sequences associated with chemoresistance. MiCK contains 1.6 million sequences of 29 gene types linked to chemoresistance and drug metabolism, curated manually from recent literature and sequence databases. The database can support downstream analysis as it provides a user-friendly web interface for sequence search and download functionalities. MiCK aims to facilitate the understanding and mitigation of chemoresistance in cancers by serving as a valuable resource for researchers. Database URL: https://microbialchemreskb.com/.
期刊介绍:
Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data.
Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.