Single-cell transcriptomics reveal the prognostic roles of epithelial and T cells and DNA methylation-based prognostic models in pancreatic cancer.

IF 4.8 2区 医学 Q1 GENETICS & HEREDITY
Jing Du, Yaqian Zhao, Jie Dong, Peng Li, Yan Hu, Hailang Fan, Feifan Zhang, Lanlan Sun, Dake Zhang, Yuhua Zhang
{"title":"Single-cell transcriptomics reveal the prognostic roles of epithelial and T cells and DNA methylation-based prognostic models in pancreatic cancer.","authors":"Jing Du, Yaqian Zhao, Jie Dong, Peng Li, Yan Hu, Hailang Fan, Feifan Zhang, Lanlan Sun, Dake Zhang, Yuhua Zhang","doi":"10.1186/s13148-024-01800-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pancreatic adenocarcinoma (PDAC) exhibits a complex microenvironment with diverse cell populations influencing patient prognosis. Single-cell RNA sequencing (scRNA-seq) was used to identify prognosis-related cell types, and DNA methylation (DNAm)-based models were developed to predict outcomes based on their cellular characteristics.</p><p><strong>Methods: </strong>We integrated scRNA-seq, bulk data, and clinical information to identify key cell populations associated with prognosis. The TCGA dataset was used for validation, and cell composition was inferred from DNAm data. Prognostic models were constructed based on cell-type-specific DNAm markers, and genomic features were compared across risk groups. Nomograms were created to assess treatment responses in different risk levels.</p><p><strong>Results: </strong>Epithelial and T cells were major prognostic factors. Genomic analysis showed that epithelial cells in PDAC followed a malignant trajectory. DNAm data from TCGA confirmed the association of higher epithelial and T cell proportions with worse prognosis. Prognostic models based on DNAm markers of these cells effectively predicted patient survival, especially 5-year overall survival (AUC = 0.834). High-risk group with epithelial cell model showed altered pathways (tight junctions, NOTCH, and P53 signaling), while high-risk group with T cell model had changes in glycolysis, hypoxia, and NOTCH signaling, with more KRAS or TP53 mutations. Low-risk groups in the T cell model displayed stronger antitumor immune responses. Treatment predictions and nomograms were developed for clinical use.</p><p><strong>Conclusions: </strong>scRNA-seq and DNAm data integration enabled the creation of predictive models based on epithelial and T cell-specific methylation patterns, offering robust prognosis prediction for PDAC patients.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"188"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-024-01800-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pancreatic adenocarcinoma (PDAC) exhibits a complex microenvironment with diverse cell populations influencing patient prognosis. Single-cell RNA sequencing (scRNA-seq) was used to identify prognosis-related cell types, and DNA methylation (DNAm)-based models were developed to predict outcomes based on their cellular characteristics.

Methods: We integrated scRNA-seq, bulk data, and clinical information to identify key cell populations associated with prognosis. The TCGA dataset was used for validation, and cell composition was inferred from DNAm data. Prognostic models were constructed based on cell-type-specific DNAm markers, and genomic features were compared across risk groups. Nomograms were created to assess treatment responses in different risk levels.

Results: Epithelial and T cells were major prognostic factors. Genomic analysis showed that epithelial cells in PDAC followed a malignant trajectory. DNAm data from TCGA confirmed the association of higher epithelial and T cell proportions with worse prognosis. Prognostic models based on DNAm markers of these cells effectively predicted patient survival, especially 5-year overall survival (AUC = 0.834). High-risk group with epithelial cell model showed altered pathways (tight junctions, NOTCH, and P53 signaling), while high-risk group with T cell model had changes in glycolysis, hypoxia, and NOTCH signaling, with more KRAS or TP53 mutations. Low-risk groups in the T cell model displayed stronger antitumor immune responses. Treatment predictions and nomograms were developed for clinical use.

Conclusions: scRNA-seq and DNAm data integration enabled the creation of predictive models based on epithelial and T cell-specific methylation patterns, offering robust prognosis prediction for PDAC patients.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.30%
发文量
150
期刊介绍: Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信