Maximizing insights from longitudinal epigenetic age data: simulations, applications, and practical guidance.

IF 4.8 2区 医学 Q1 GENETICS & HEREDITY
Anna Großbach, Matthew J Suderman, Anke Hüls, Alexandre A Lussier, Andrew D A C Smith, Esther Walton, Erin C Dunn, Andrew J Simpkin
{"title":"Maximizing insights from longitudinal epigenetic age data: simulations, applications, and practical guidance.","authors":"Anna Großbach, Matthew J Suderman, Anke Hüls, Alexandre A Lussier, Andrew D A C Smith, Esther Walton, Erin C Dunn, Andrew J Simpkin","doi":"10.1186/s13148-024-01784-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Epigenetic age (EA) is an age estimate, developed using DNA methylation (DNAm) states of selected CpG sites across the genome. Although EA and chronological age are highly correlated, EA may not increase uniformly with time. Departures, known as epigenetic age acceleration (EAA), are common and have been linked to various traits and future disease risk. Limited by available data, most studies investigating these relationships have been cross-sectional, using a single EA measurement. However, the recent growth in longitudinal DNAm studies has led to analyses of associations with EA over time. These studies differ in (1) their choice of model; (2) the primary outcome (EA vs. EAA); and (3) in their use of chronological age or age-independent time variables to account for the temporal dynamic. We evaluated the robustness of each approach using simulations and tested our results in two real-world examples, using biological sex and birthweight as predictors of longitudinal EA.</p><p><strong>Results: </strong>Our simulations showed most accurate effect sizes in a linear mixed model or generalized estimating equation, using chronological age as the time variable. The use of EA versus EAA as an outcome did not strongly impact estimates. Applying the optimal model in real-world data uncovered advanced GrimAge in individuals assigned male at birth that decelerates over time.</p><p><strong>Conclusion: </strong>Our results can serve as a guide for forthcoming longitudinal EA studies, aiding in methodological decisions that may determine whether an association is accurately estimated, overestimated, or potentially overlooked.</p>","PeriodicalId":10366,"journal":{"name":"Clinical Epigenetics","volume":"16 1","pages":"187"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epigenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13148-024-01784-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Epigenetic age (EA) is an age estimate, developed using DNA methylation (DNAm) states of selected CpG sites across the genome. Although EA and chronological age are highly correlated, EA may not increase uniformly with time. Departures, known as epigenetic age acceleration (EAA), are common and have been linked to various traits and future disease risk. Limited by available data, most studies investigating these relationships have been cross-sectional, using a single EA measurement. However, the recent growth in longitudinal DNAm studies has led to analyses of associations with EA over time. These studies differ in (1) their choice of model; (2) the primary outcome (EA vs. EAA); and (3) in their use of chronological age or age-independent time variables to account for the temporal dynamic. We evaluated the robustness of each approach using simulations and tested our results in two real-world examples, using biological sex and birthweight as predictors of longitudinal EA.

Results: Our simulations showed most accurate effect sizes in a linear mixed model or generalized estimating equation, using chronological age as the time variable. The use of EA versus EAA as an outcome did not strongly impact estimates. Applying the optimal model in real-world data uncovered advanced GrimAge in individuals assigned male at birth that decelerates over time.

Conclusion: Our results can serve as a guide for forthcoming longitudinal EA studies, aiding in methodological decisions that may determine whether an association is accurately estimated, overestimated, or potentially overlooked.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.30%
发文量
150
期刊介绍: Clinical Epigenetics, the official journal of the Clinical Epigenetics Society, is an open access, peer-reviewed journal that encompasses all aspects of epigenetic principles and mechanisms in relation to human disease, diagnosis and therapy. Clinical trials and research in disease model organisms are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信