Yuanyuan Peng, Aidi Lin, Meng Wang, Tian Lin, Linna Liu, Jianhua Wu, Ke Zou, Tingkun Shi, Lixia Feng, Zhen Liang, Tao Li, Dan Liang, Shanshan Yu, Dawei Sun, Jing Luo, Ling Gao, Xinjian Chen, Ching-Yu Cheng, Huazhu Fu, Haoyu Chen
{"title":"Enhancing AI reliability: A foundation model with uncertainty estimation for optical coherence tomography-based retinal disease diagnosis.","authors":"Yuanyuan Peng, Aidi Lin, Meng Wang, Tian Lin, Linna Liu, Jianhua Wu, Ke Zou, Tingkun Shi, Lixia Feng, Zhen Liang, Tao Li, Dan Liang, Shanshan Yu, Dawei Sun, Jing Luo, Ling Gao, Xinjian Chen, Ching-Yu Cheng, Huazhu Fu, Haoyu Chen","doi":"10.1016/j.xcrm.2024.101876","DOIUrl":null,"url":null,"abstract":"<p><p>Inability to express the confidence level and detect unseen disease classes limits the clinical implementation of artificial intelligence in the real world. We develop a foundation model with uncertainty estimation (FMUE) to detect 16 retinal conditions on optical coherence tomography (OCT). In the internal test set, FMUE achieves a higher F1 score of 95.74% than other state-of-the-art algorithms (92.03%-93.66%) and improves to 97.44% with threshold strategy. The model achieves similar excellent performance on two external test sets from the same and different OCT machines. In human-model comparison, FMUE achieves a higher F1 score of 96.30% than retinal experts (86.95%, p = 0.004), senior doctors (82.71%, p < 0.001), junior doctors (66.55%, p < 0.001), and generative pretrained transformer 4 with vision (GPT-4V) (32.39%, p < 0.001). Besides, FMUE predicts high uncertainty scores for >85% images of non-target-category diseases or with low quality to prompt manual checks and prevent misdiagnosis. Our FMUE provides a trustworthy method for automatic retinal anomaly detection in a clinical open-set environment.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101876"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101876","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inability to express the confidence level and detect unseen disease classes limits the clinical implementation of artificial intelligence in the real world. We develop a foundation model with uncertainty estimation (FMUE) to detect 16 retinal conditions on optical coherence tomography (OCT). In the internal test set, FMUE achieves a higher F1 score of 95.74% than other state-of-the-art algorithms (92.03%-93.66%) and improves to 97.44% with threshold strategy. The model achieves similar excellent performance on two external test sets from the same and different OCT machines. In human-model comparison, FMUE achieves a higher F1 score of 96.30% than retinal experts (86.95%, p = 0.004), senior doctors (82.71%, p < 0.001), junior doctors (66.55%, p < 0.001), and generative pretrained transformer 4 with vision (GPT-4V) (32.39%, p < 0.001). Besides, FMUE predicts high uncertainty scores for >85% images of non-target-category diseases or with low quality to prompt manual checks and prevent misdiagnosis. Our FMUE provides a trustworthy method for automatic retinal anomaly detection in a clinical open-set environment.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.