Erica Pranzini, Livio Muccillo, Ilaria Nesi, Alice Santi, Caterina Mancini, Giulia Lori, Massimo Genovese, Tiziano Lottini, Giuseppina Comito, Anna Caselli, Annarosa Arcangeli, Lina Sabatino, Vittorio Colantuoni, Maria Letizia Taddei, Paolo Cirri, Paolo Paoli
{"title":"Limiting serine availability during tumor progression promotes muscle wasting in cancer cachexia.","authors":"Erica Pranzini, Livio Muccillo, Ilaria Nesi, Alice Santi, Caterina Mancini, Giulia Lori, Massimo Genovese, Tiziano Lottini, Giuseppina Comito, Anna Caselli, Annarosa Arcangeli, Lina Sabatino, Vittorio Colantuoni, Maria Letizia Taddei, Paolo Cirri, Paolo Paoli","doi":"10.1038/s41420-024-02271-1","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of body weight occurring in about 80% of cancer patients, frequently representing the leading cause of death. Dietary intervention is emerging as a promising therapeutic strategy to counteract cancer-induced wasting. Serine is the second most-consumed amino acid (AA) by cancer cells and has emerged to be strictly necessary to preserve skeletal muscle structure and functionality. Here, we demonstrate that decreased serine availability during tumor progression promotes myotubes diameter reduction in vitro and induces muscle wasting in in vivo mice models. By investigating the metabolic crosstalk between colorectal cancer cells and muscle cells, we found that incubating myotubes with conditioned media from tumor cells relying on exogenous serine consumption triggers pronounced myotubes diameter reduction. Accordingly, culturing myotubes in a serine-free medium induces fibers width reduction and suppresses the activation of the AKT-mTORC1 pathway with consequent impairment in protein synthesis, increased protein degradation, and enhanced expression of the muscle atrophy-related genes Atrogin1 and MuRF1. In addition, serine-starved conditions affect myoblast differentiation and mitochondrial oxidative metabolism, finally inducing oxidative stress in myotubes. Consistently, serine dietary deprivation strongly strengthens cancer-associated weight loss and muscle atrophy in mice models. These findings uncover serine consumption by tumor cells as a previously undisclosed driver in cancer cachexia, opening new routes for possible therapeutic approaches.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"510"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02271-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of body weight occurring in about 80% of cancer patients, frequently representing the leading cause of death. Dietary intervention is emerging as a promising therapeutic strategy to counteract cancer-induced wasting. Serine is the second most-consumed amino acid (AA) by cancer cells and has emerged to be strictly necessary to preserve skeletal muscle structure and functionality. Here, we demonstrate that decreased serine availability during tumor progression promotes myotubes diameter reduction in vitro and induces muscle wasting in in vivo mice models. By investigating the metabolic crosstalk between colorectal cancer cells and muscle cells, we found that incubating myotubes with conditioned media from tumor cells relying on exogenous serine consumption triggers pronounced myotubes diameter reduction. Accordingly, culturing myotubes in a serine-free medium induces fibers width reduction and suppresses the activation of the AKT-mTORC1 pathway with consequent impairment in protein synthesis, increased protein degradation, and enhanced expression of the muscle atrophy-related genes Atrogin1 and MuRF1. In addition, serine-starved conditions affect myoblast differentiation and mitochondrial oxidative metabolism, finally inducing oxidative stress in myotubes. Consistently, serine dietary deprivation strongly strengthens cancer-associated weight loss and muscle atrophy in mice models. These findings uncover serine consumption by tumor cells as a previously undisclosed driver in cancer cachexia, opening new routes for possible therapeutic approaches.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.