{"title":"M6A modification-mediated LIMA1 promotes the progression of hepatocellular carcinoma through the wnt-βcatenin/Hippo pathway.","authors":"Chao Zhang, Xiaoxiao Wang, Huangqin Song, Junlong Yuan, Xiaomin Zhang, Yiran Yuan, Zhuangqiang Wang, Zhang Lei, Jiefeng He","doi":"10.1007/s10565-024-09959-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hepatocellular carcinoma (HCC), considered as one of the most common and lethal cancers worldwide, has drawn significant attention from researchers.Extensively studied diverse cancers, the function of LIMA1 in tumorigenesis and cancer progression remains ambiguous.. Moreover, the role of LIMA1 in HCC remains controversial.</p><p><strong>Methods: </strong>The expression difference of LIMA1 in hepatocellular carcinoma, which was verified by TMT quantitative proteomics, immunohistochemistry, western blot, and the TCGA database, has been investigated in this study. Demonstrated by using transwell, cck8, sphere formation, and other experiments, the effects of LIMA1 on the migration, proliferation, stemness, and other aspects of hepatocellular carcinoma were significant. Moreover, the effect of LIMA1 on the wnt-βcatenin/Hippo pathway was revealed by using RNA sequencing and western blot, and the relationship between LIMA1 and βcatenin was verified by using COIP. Finally, the effect of m6a modification on LIMA1 was further verified using Western blotting, actinomycin D and MeRip experiments.</p><p><strong>Results: </strong>In HCC tissues and several HCC cell lines, LIMA1 was expressed at a relatively high level.LIMA1 positively regulated the invasion, migration, proliferation and stemness of hepatocellular carcinoma, and silencing of LIMA1 inhibited the tumorigenic ability of HCC cells in nude mice. Moreover, it was shown that LIMA1 can have an impact on the wnt-β-catenin/Hippo pathway. And silencing β-catenin suppressed the invasion, migration, proliferation and stemness of hepatocellular carcinoma cells mediated by LIMA1. Finally, it was further verified that the activation of LIMA1 in hepatocellular carcinoma cells is due to m6-methyladenosine methylation that is dependent on METTL3.</p><p><strong>Conclusions: </strong>In HCC, LIMA1 functions as a tumor promoter and engages with the WNT-β-catenin and Hippo signaling pathways,, affecting the characteristics of tumor cells. LIMA1 expression is regulated by METTL3-mediated m6A modification, leading to its high expression in HCC. Our research presents a hopeful objective for the detection and therapy of HCC.</p>","PeriodicalId":9672,"journal":{"name":"Cell Biology and Toxicology","volume":"41 1","pages":"9"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662050/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology and Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10565-024-09959-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Hepatocellular carcinoma (HCC), considered as one of the most common and lethal cancers worldwide, has drawn significant attention from researchers.Extensively studied diverse cancers, the function of LIMA1 in tumorigenesis and cancer progression remains ambiguous.. Moreover, the role of LIMA1 in HCC remains controversial.
Methods: The expression difference of LIMA1 in hepatocellular carcinoma, which was verified by TMT quantitative proteomics, immunohistochemistry, western blot, and the TCGA database, has been investigated in this study. Demonstrated by using transwell, cck8, sphere formation, and other experiments, the effects of LIMA1 on the migration, proliferation, stemness, and other aspects of hepatocellular carcinoma were significant. Moreover, the effect of LIMA1 on the wnt-βcatenin/Hippo pathway was revealed by using RNA sequencing and western blot, and the relationship between LIMA1 and βcatenin was verified by using COIP. Finally, the effect of m6a modification on LIMA1 was further verified using Western blotting, actinomycin D and MeRip experiments.
Results: In HCC tissues and several HCC cell lines, LIMA1 was expressed at a relatively high level.LIMA1 positively regulated the invasion, migration, proliferation and stemness of hepatocellular carcinoma, and silencing of LIMA1 inhibited the tumorigenic ability of HCC cells in nude mice. Moreover, it was shown that LIMA1 can have an impact on the wnt-β-catenin/Hippo pathway. And silencing β-catenin suppressed the invasion, migration, proliferation and stemness of hepatocellular carcinoma cells mediated by LIMA1. Finally, it was further verified that the activation of LIMA1 in hepatocellular carcinoma cells is due to m6-methyladenosine methylation that is dependent on METTL3.
Conclusions: In HCC, LIMA1 functions as a tumor promoter and engages with the WNT-β-catenin and Hippo signaling pathways,, affecting the characteristics of tumor cells. LIMA1 expression is regulated by METTL3-mediated m6A modification, leading to its high expression in HCC. Our research presents a hopeful objective for the detection and therapy of HCC.
期刊介绍:
Cell Biology and Toxicology (CBT) is an international journal focused on clinical and translational research with an emphasis on molecular and cell biology, genetic and epigenetic heterogeneity, drug discovery and development, and molecular pharmacology and toxicology. CBT has a disease-specific scope prioritizing publications on gene and protein-based regulation, intracellular signaling pathway dysfunction, cell type-specific function, and systems in biomedicine in drug discovery and development. CBT publishes original articles with outstanding, innovative and significant findings, important reviews on recent research advances and issues of high current interest, opinion articles of leading edge science, and rapid communication or reports, on molecular mechanisms and therapies in diseases.