Naomi Lomeli, Diana C Pearre, Javier Lepe, Donovan A Argueta, Mya A Arellano, Joni L Ricks-Oddie, Kalpna Gupta, Daniela A Bota
{"title":"N-acetylcysteine prevents cisplatin-induced cognitive impairments in an ovarian cancer rat model.","authors":"Naomi Lomeli, Diana C Pearre, Javier Lepe, Donovan A Argueta, Mya A Arellano, Joni L Ricks-Oddie, Kalpna Gupta, Daniela A Bota","doi":"10.1016/j.canlet.2024.217405","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer-related cognitive impairment (CRCI) is prevalent among cancer patients. A critical disparity in the CRCI field is that most pre-clinical studies have been conducted on young cancer-free male rodents, although CRCI predominantly affects breast cancer and ovarian cancer women survivors. Since oxidative stress is widely implicated in the development of CRCI, we developed an ovarian cancer xenograft rat model of CRCI in Cr:NIH-RNU female rats to examine whether administration of the antioxidant N-acetylcysteine (NAC) prevents cisplatin-induced CRCI without altering its anti-cancer efficacy. In vitro, delayed treatment with NAC (10 h) following cisplatin treatment in the human ovarian cancer cell line SKOV3.ip1 did not decrease cisplatin's anti-cancer efficacy while mitigating hippocampal dendritic branching damage and neuronal apoptosis. Rats received subcutaneous and intraperitoneal implantation of SKOV3.ip1 cells. Rats received one cisplatin (5 mg/kg) injection every two weeks for a total of four cycles, with or without NAC (250 mg/kg/day), given for five consecutive days during cisplatin treatment. NAC was administered 10 h after cisplatin, based on our in vitro data. Cognitive testing was performed six to seven weeks after treatment cessation. In vivo, cognitive impairments were observed in tumor-bearing rats in the vehicle and cisplatin-treatment groups, while delayed NAC prevented cognitive impairments. Delayed NAC administration did not affect cisplatin-induced tumor volume reduction. Our study supports using NAC to mitigate cisplatin-induced CRCI through the novel development of an ovarian cancer rodent model. This study highlights the importance of developing clinically relevant tumor-bearing models to elucidate the underlying mechanisms associated with CRCI, which will aid in identifying potential therapeutic agents for preventing CRCI.</p>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":" ","pages":"217405"},"PeriodicalIF":9.1000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.canlet.2024.217405","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer-related cognitive impairment (CRCI) is prevalent among cancer patients. A critical disparity in the CRCI field is that most pre-clinical studies have been conducted on young cancer-free male rodents, although CRCI predominantly affects breast cancer and ovarian cancer women survivors. Since oxidative stress is widely implicated in the development of CRCI, we developed an ovarian cancer xenograft rat model of CRCI in Cr:NIH-RNU female rats to examine whether administration of the antioxidant N-acetylcysteine (NAC) prevents cisplatin-induced CRCI without altering its anti-cancer efficacy. In vitro, delayed treatment with NAC (10 h) following cisplatin treatment in the human ovarian cancer cell line SKOV3.ip1 did not decrease cisplatin's anti-cancer efficacy while mitigating hippocampal dendritic branching damage and neuronal apoptosis. Rats received subcutaneous and intraperitoneal implantation of SKOV3.ip1 cells. Rats received one cisplatin (5 mg/kg) injection every two weeks for a total of four cycles, with or without NAC (250 mg/kg/day), given for five consecutive days during cisplatin treatment. NAC was administered 10 h after cisplatin, based on our in vitro data. Cognitive testing was performed six to seven weeks after treatment cessation. In vivo, cognitive impairments were observed in tumor-bearing rats in the vehicle and cisplatin-treatment groups, while delayed NAC prevented cognitive impairments. Delayed NAC administration did not affect cisplatin-induced tumor volume reduction. Our study supports using NAC to mitigate cisplatin-induced CRCI through the novel development of an ovarian cancer rodent model. This study highlights the importance of developing clinically relevant tumor-bearing models to elucidate the underlying mechanisms associated with CRCI, which will aid in identifying potential therapeutic agents for preventing CRCI.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.