Comparative transcriptomes and WGCNA reveal hub genes for spike germination in different quinoa lines.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Liubin Huang, Lingyuan Zhang, Ping Zhang, Junna Liu, Li Li, Hanxue Li, Xuqin Wang, Yutao Bai, Guofei Jiang, Peng Qin
{"title":"Comparative transcriptomes and WGCNA reveal hub genes for spike germination in different quinoa lines.","authors":"Liubin Huang, Lingyuan Zhang, Ping Zhang, Junna Liu, Li Li, Hanxue Li, Xuqin Wang, Yutao Bai, Guofei Jiang, Peng Qin","doi":"10.1186/s12864-024-11151-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Quinoa, as a new food crop, has attracted extensive attention at home and abroad. However, the natural disaster of spike germination seriously threatens the quality and yield of quinoa. Currently, there are limited reports on the molecular mechanisms associated with spike germination in quinoa.</p><p><strong>Results: </strong>In this study, we utilized transcriptome sequencing technology and successfully obtained 154.51 Gb of high-quality data with a comparison efficiency of more than 88%, which fully demonstrates the extremely high reliability of the sequencing results and lays a solid foundation for subsequent analysis. Using these data, we constructed a weighted gene co-expression network (WGCNA) related to starch, sucrose, α-amylase, and phenolic acid metabolites, and screened six co-expression modules closely related to spike germination traits. Two of the modules associated with physiological indicators were analyzed in depth, and nine core genes were finally predicted. Further functional annotation revealed four key transcription factors involved in the regulation of dormancy and germination processes: gene LOC110698065, gene LOC110696037, gene LOC110736224, and gene LOC110705759, belonging to the bHLH, NF-YA, MYB, and FAR1 gene families, respectively.</p><p><strong>Conclusions: </strong>These results provide clues to identify the core genes involved in quinoa spike germination. This will ultimately provide a theoretical basis for breeding new quinoa varieties with resistance.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"25 1","pages":"1231"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11662621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-024-11151-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Quinoa, as a new food crop, has attracted extensive attention at home and abroad. However, the natural disaster of spike germination seriously threatens the quality and yield of quinoa. Currently, there are limited reports on the molecular mechanisms associated with spike germination in quinoa.

Results: In this study, we utilized transcriptome sequencing technology and successfully obtained 154.51 Gb of high-quality data with a comparison efficiency of more than 88%, which fully demonstrates the extremely high reliability of the sequencing results and lays a solid foundation for subsequent analysis. Using these data, we constructed a weighted gene co-expression network (WGCNA) related to starch, sucrose, α-amylase, and phenolic acid metabolites, and screened six co-expression modules closely related to spike germination traits. Two of the modules associated with physiological indicators were analyzed in depth, and nine core genes were finally predicted. Further functional annotation revealed four key transcription factors involved in the regulation of dormancy and germination processes: gene LOC110698065, gene LOC110696037, gene LOC110736224, and gene LOC110705759, belonging to the bHLH, NF-YA, MYB, and FAR1 gene families, respectively.

Conclusions: These results provide clues to identify the core genes involved in quinoa spike germination. This will ultimately provide a theoretical basis for breeding new quinoa varieties with resistance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信