Tarali Devi, Stefan Mebs, Dibya Jyoti Barman, Amanda Opis-Basilio, Michael Haumann, Kallol Ray
{"title":"Reinvestigation of the mechanism of dioxygen activation at a Mn<sup>II</sup>(cyclam) center.","authors":"Tarali Devi, Stefan Mebs, Dibya Jyoti Barman, Amanda Opis-Basilio, Michael Haumann, Kallol Ray","doi":"10.1016/j.jinorgbio.2024.112809","DOIUrl":null,"url":null,"abstract":"<p><p>This study deals with the unprecedented reactivity of a [(cyclam)Mn<sup>II</sup>(OTf)<sub>2</sub>] (3-cis; OTf = CF<sub>3</sub>SO<sub>3<sup>-</sup></sub>) with O<sub>2</sub>, which, depending on the presence or absence of a hydrogen atom donor like 1-hydroxy-2,2,6,6-tetramethyl-piperidine (TEMPO-H), selectively generates di-μ-oxo Mn(III)Mn(IV) (1) or Mn<sup>IV</sup><sub>2</sub> (2) complexes, respectively. Both dimers have been characterized by different techniques including single-crystal X-ray diffraction, X-ray absorption spectroscopy, and electron paramagnetic resonance. Oxygenation reactions carried out with labeled <sup>18</sup>O<sub>2</sub> and Resonance Raman spectroscopy unambiguously show that the oxygen atoms present in the Mn<sup>IV</sup>Mn<sup>III</sup> dimer originate from O<sub>2</sub>. Experimental evidences are provided for a novel method of dioxygen activation involving three Mn ions or two Mn ions and TEMPO-H to generate the bis(μ-oxo)dimanganese(IV) or bis(μ-oxo) dimanganese(III, IV) cores, respectively.</p>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"264 ","pages":"112809"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jinorgbio.2024.112809","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study deals with the unprecedented reactivity of a [(cyclam)MnII(OTf)2] (3-cis; OTf = CF3SO3-) with O2, which, depending on the presence or absence of a hydrogen atom donor like 1-hydroxy-2,2,6,6-tetramethyl-piperidine (TEMPO-H), selectively generates di-μ-oxo Mn(III)Mn(IV) (1) or MnIV2 (2) complexes, respectively. Both dimers have been characterized by different techniques including single-crystal X-ray diffraction, X-ray absorption spectroscopy, and electron paramagnetic resonance. Oxygenation reactions carried out with labeled 18O2 and Resonance Raman spectroscopy unambiguously show that the oxygen atoms present in the MnIVMnIII dimer originate from O2. Experimental evidences are provided for a novel method of dioxygen activation involving three Mn ions or two Mn ions and TEMPO-H to generate the bis(μ-oxo)dimanganese(IV) or bis(μ-oxo) dimanganese(III, IV) cores, respectively.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.