Biomimetic biomass-based composite carbon aerogels with excellent mechanical performance for energy storage and pressure sensing in extreme environments.
Yuewei Jiang, Ziyi Shen, Ziyi Liu, Hui Gong, Bo Chen, Yingying Su, Jinghui Zhou, Xu Fei, Yao Li
{"title":"Biomimetic biomass-based composite carbon aerogels with excellent mechanical performance for energy storage and pressure sensing in extreme environments.","authors":"Yuewei Jiang, Ziyi Shen, Ziyi Liu, Hui Gong, Bo Chen, Yingying Su, Jinghui Zhou, Xu Fei, Yao Li","doi":"10.1016/j.jcis.2024.12.051","DOIUrl":null,"url":null,"abstract":"<p><p>The poor mechanical properties of biomass-based carbon aerogels after carbonization severely limit their application in pressure sensing and energy storage for wearable devices and electronic skin. In this work, a supramolecular assembly structure was designed inspired by the unique microstructure of natural wood for the preparation of biomass-based carbon aerogels with supercompressibility, elasticity, stable strain electrical signal response, and wide sensitive detection. Bacterial cellulose and lignin were selected as the main components of the biomass-based composite aerogel 'cell wall'. The graphene oxide with an aromatic structure was introduced to induce the assembly of firmly attached lignin and bacterial cellulose. The prepared biomass-based carbon aerogels exhibit supercompressibility (at least 100 cycles at 90 % strain), high elasticity (88.88 % height retention after 1000 cycles at a strain of 50 %), surprising temperature-constant superelasticity and fatigue resistance (shape retention rate greater than 85 %) at -196 ℃. In particular, it exhibits temperature-invariant high linear sensitivity over an extremely wide operating pressure range (0-43 kPa), allowing accurate detection of human signals. In addition, the prepared carbon aerogels exhibit excellent performance in supercapacitors. It has a specific capacitance of 158F/g at a current density of 1 A/g and an energy density of 18.75 Wh/kg at a high power density of 2500 W/g. This strategy also demonstrates its promise as a wearable device in hostile environments.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"786-798"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.051","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The poor mechanical properties of biomass-based carbon aerogels after carbonization severely limit their application in pressure sensing and energy storage for wearable devices and electronic skin. In this work, a supramolecular assembly structure was designed inspired by the unique microstructure of natural wood for the preparation of biomass-based carbon aerogels with supercompressibility, elasticity, stable strain electrical signal response, and wide sensitive detection. Bacterial cellulose and lignin were selected as the main components of the biomass-based composite aerogel 'cell wall'. The graphene oxide with an aromatic structure was introduced to induce the assembly of firmly attached lignin and bacterial cellulose. The prepared biomass-based carbon aerogels exhibit supercompressibility (at least 100 cycles at 90 % strain), high elasticity (88.88 % height retention after 1000 cycles at a strain of 50 %), surprising temperature-constant superelasticity and fatigue resistance (shape retention rate greater than 85 %) at -196 ℃. In particular, it exhibits temperature-invariant high linear sensitivity over an extremely wide operating pressure range (0-43 kPa), allowing accurate detection of human signals. In addition, the prepared carbon aerogels exhibit excellent performance in supercapacitors. It has a specific capacitance of 158F/g at a current density of 1 A/g and an energy density of 18.75 Wh/kg at a high power density of 2500 W/g. This strategy also demonstrates its promise as a wearable device in hostile environments.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies