{"title":"Mining of antioxidant sesquiterpene lactones from the aerial parts of Saussurea involucrata with feature-based molecular network strategy.","authors":"Bodou Zhang, Lianting Liang, Jingwen Zhao, Sheng Li, Yong Sun, Lijun Fu, Xiumin Zhang, Wenyi Kang, Yu Zhang","doi":"10.1016/j.bioorg.2024.108067","DOIUrl":null,"url":null,"abstract":"<p><p>Sesquiterpene lactones (SLs) are a class of natural products with diverse structural scaffoldings and biological activities, making them intriguing objects in the fields of pharmaceutical industry, drug development, and pharmacology. Herein, fifteen SLs, including eleven undescribed SLs compounds sauruintones A-K (1-8 and 13-15), were isolated and identified from the aerial parts of Saussurea involucrata. Their structures were characterized by using mass spectrometry, spectroscopic methods, computational calculations, and single crystal X-ray diffraction. The Feature-Based Molecular Network (FBMN) strategy was utilized for the annotation of SLs with their MS/MS fragmentation patterns. Most of the SLs exerted their protective effects against oxidative stress by enhancing the levels of antioxidant enzyme (CAT) and reducing the malondialdehyde (MDA) levels. Among them, compound 12 exhibited potent reactive oxygen species (ROS) inhibitory activities and enhanced the activities of CAT, superoxide dismutase (SOD), and glutathione peroxidase (GSH), and decreased the content of MDA at concentrations of 10-25 μM. Further RT-qPCR assays and western blot analysis revealed it reduced the level of ROS by activating the nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling pathway.</p>","PeriodicalId":257,"journal":{"name":"Bioorganic Chemistry","volume":"154 ","pages":"108067"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.bioorg.2024.108067","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sesquiterpene lactones (SLs) are a class of natural products with diverse structural scaffoldings and biological activities, making them intriguing objects in the fields of pharmaceutical industry, drug development, and pharmacology. Herein, fifteen SLs, including eleven undescribed SLs compounds sauruintones A-K (1-8 and 13-15), were isolated and identified from the aerial parts of Saussurea involucrata. Their structures were characterized by using mass spectrometry, spectroscopic methods, computational calculations, and single crystal X-ray diffraction. The Feature-Based Molecular Network (FBMN) strategy was utilized for the annotation of SLs with their MS/MS fragmentation patterns. Most of the SLs exerted their protective effects against oxidative stress by enhancing the levels of antioxidant enzyme (CAT) and reducing the malondialdehyde (MDA) levels. Among them, compound 12 exhibited potent reactive oxygen species (ROS) inhibitory activities and enhanced the activities of CAT, superoxide dismutase (SOD), and glutathione peroxidase (GSH), and decreased the content of MDA at concentrations of 10-25 μM. Further RT-qPCR assays and western blot analysis revealed it reduced the level of ROS by activating the nuclear factor erythroid 2-related factor 2 (Nrf-2) signaling pathway.
期刊介绍:
Bioorganic Chemistry publishes research that addresses biological questions at the molecular level, using organic chemistry and principles of physical organic chemistry. The scope of the journal covers a range of topics at the organic chemistry-biology interface, including: enzyme catalysis, biotransformation and enzyme inhibition; nucleic acids chemistry; medicinal chemistry; natural product chemistry, natural product synthesis and natural product biosynthesis; antimicrobial agents; lipid and peptide chemistry; biophysical chemistry; biological probes; bio-orthogonal chemistry and biomimetic chemistry.
For manuscripts dealing with synthetic bioactive compounds, the Journal requires that the molecular target of the compounds described must be known, and must be demonstrated experimentally in the manuscript. For studies involving natural products, if the molecular target is unknown, some data beyond simple cell-based toxicity studies to provide insight into the mechanism of action is required. Studies supported by molecular docking are welcome, but must be supported by experimental data. The Journal does not consider manuscripts that are purely theoretical or computational in nature.
The Journal publishes regular articles, short communications and reviews. Reviews are normally invited by Editors or Editorial Board members. Authors of unsolicited reviews should first contact an Editor or Editorial Board member to determine whether the proposed article is within the scope of the Journal.