Trang T. D. Nguyen, Loan T. T. Nguyen, Quang-Thinh Bui, Le Nhat Duy, Witold Pedrycz, Bay Vo
{"title":"Efficient strategies for spatial data clustering using topological relations","authors":"Trang T. D. Nguyen, Loan T. T. Nguyen, Quang-Thinh Bui, Le Nhat Duy, Witold Pedrycz, Bay Vo","doi":"10.1007/s10489-024-05927-8","DOIUrl":null,"url":null,"abstract":"<div><p>Using topology in data analysis is a promising new field, and recently, it has attracted numerous researchers and played a vital role in both research and application. This study explores the burgeoning field of topology-based data analysis, mainly focusing on its application in clustering algorithms within data mining. Our research addresses the critical challenges of reducing execution time and enhancing clustering quality, which includes decreasing the dependency on input parameters - a notable limitation in current methods. We propose five innovative strategies to optimize clustering algorithms that utilize topological relationships by combining solutions of expanding points fewer times, merging clusters, and using a jump to increase the radius value according to the nearest neighbor distance array index. These strategies aim to refine clustering performance by improving algorithmic efficiency and the quality of clustering outcomes. This approach elevates the standard of cluster analysis and contributes significantly to the evolving landscape of data mining and analysis.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05927-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Using topology in data analysis is a promising new field, and recently, it has attracted numerous researchers and played a vital role in both research and application. This study explores the burgeoning field of topology-based data analysis, mainly focusing on its application in clustering algorithms within data mining. Our research addresses the critical challenges of reducing execution time and enhancing clustering quality, which includes decreasing the dependency on input parameters - a notable limitation in current methods. We propose five innovative strategies to optimize clustering algorithms that utilize topological relationships by combining solutions of expanding points fewer times, merging clusters, and using a jump to increase the radius value according to the nearest neighbor distance array index. These strategies aim to refine clustering performance by improving algorithmic efficiency and the quality of clustering outcomes. This approach elevates the standard of cluster analysis and contributes significantly to the evolving landscape of data mining and analysis.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.