An effective dynamical evaluation and optimization mechanism for accurate motion primitives learning

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chunfang Liu, Changfeng Li, Xiaoli Li, Guoyu Zuo, Pan Yu
{"title":"An effective dynamical evaluation and optimization mechanism for accurate motion primitives learning","authors":"Chunfang Liu,&nbsp;Changfeng Li,&nbsp;Xiaoli Li,&nbsp;Guoyu Zuo,&nbsp;Pan Yu","doi":"10.1007/s10489-024-06147-w","DOIUrl":null,"url":null,"abstract":"<div><p>Trajectory planning is an important stage in robot operation. Many imitation learning methods have been researched for learning operation skills from demonstrated trajectories. However, it is still a challenge to use the learned skill models to generate motion trajectories suitable for various changing conditions. In this paper, a closed-loop dynamical evaluation and optimization mechanism is proposed for imitation learning model to generate the optimal trajectories that can adapt to multiple conditions. This mechanism works by integrating the following parts: (1) imitation learning based on an improved dynamic motion primitive; (2) constructing the trajectory similarity evaluation function; (3) presenting an enhanced whale optimization algorithm(EWOA) by introducing the piecewise decay rate and inertia weight for avoiding getting stuck in local optima. The EWOA iteratively optimizes the key parameter of the skill learning model based on the cost function of the trajectory similarity evaluation for generating the trajectory with the highest similarity to the teaching trajectory. The effectiveness of the EWOA is validated using 10 functions by comparing with the other two methods. And the feasibility of the dynamical optimization mechanism is proved under different motion primitives and various generation conditions.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06147-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Trajectory planning is an important stage in robot operation. Many imitation learning methods have been researched for learning operation skills from demonstrated trajectories. However, it is still a challenge to use the learned skill models to generate motion trajectories suitable for various changing conditions. In this paper, a closed-loop dynamical evaluation and optimization mechanism is proposed for imitation learning model to generate the optimal trajectories that can adapt to multiple conditions. This mechanism works by integrating the following parts: (1) imitation learning based on an improved dynamic motion primitive; (2) constructing the trajectory similarity evaluation function; (3) presenting an enhanced whale optimization algorithm(EWOA) by introducing the piecewise decay rate and inertia weight for avoiding getting stuck in local optima. The EWOA iteratively optimizes the key parameter of the skill learning model based on the cost function of the trajectory similarity evaluation for generating the trajectory with the highest similarity to the teaching trajectory. The effectiveness of the EWOA is validated using 10 functions by comparing with the other two methods. And the feasibility of the dynamical optimization mechanism is proved under different motion primitives and various generation conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信