Spectral Properties and Energy of Weighted Adjacency Matrices for Graphs with Degree-based Edge-weight Functions

IF 0.8 3区 数学 Q2 MATHEMATICS
Xue Liang Li, Ning Yang
{"title":"Spectral Properties and Energy of Weighted Adjacency Matrices for Graphs with Degree-based Edge-weight Functions","authors":"Xue Liang Li,&nbsp;Ning Yang","doi":"10.1007/s10114-024-3127-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a graph and <i>d</i><sub><i>i</i></sub> denote the degree of a vertex <i>v</i><sub><i>i</i></sub> in <i>G</i>, and let <i>f</i>(<i>x,y</i>) be a real symmetric function. Then one can get an edge-weighted graph in such a way that for each edge <i>v</i><sub><i>i</i></sub><i>v</i><sub><i>j</i></sub> of <i>G</i>, the weight of <i>v</i><sub><i>i</i></sub><i>v</i><sub><i>j</i></sub> is assigned by the value <i>f</i>(<i>d</i><sub><i>i</i></sub>,<i>d</i><sub><i>j</i></sub>). Hence, we have a weighted adjacency matrix <span>\\(\\mathcal{A}_{f}(G)\\)</span> of <i>G</i>, in which the <i>ij</i>-entry is equal to <i>f</i>(<i>d</i><sub><i>i</i></sub>,<i>d</i><sub><i>j</i></sub>) if <i>v</i><sub><i>i</i></sub><i>v</i><sub><i>j</i></sub> ∈ <i>E</i>(<i>G</i>) and 0 otherwise. This paper attempts to unify the study of spectral properties for the weighted adjacency matrix <span>\\(\\mathcal{A}_{f}(G)\\)</span> of graphs with a degree-based edge-weight function <i>f</i>(<i>x,y</i>). Some lower and upper bounds of the largest weighted adjacency eigenvalue λ<sub>1</sub> are given, and the corresponding extremal graphs are characterized. Bounds of the energy <span>\\(\\mathcal{E}_{f}(G)\\)</span> for the weighted adjacency matrix <span>\\(\\mathcal{A}_{f}(G)\\)</span> are also obtained. By virtue of the unified method, this makes many earlier results become special cases of our results.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 12","pages":"3027 - 3042"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-3127-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph and di denote the degree of a vertex vi in G, and let f(x,y) be a real symmetric function. Then one can get an edge-weighted graph in such a way that for each edge vivj of G, the weight of vivj is assigned by the value f(di,dj). Hence, we have a weighted adjacency matrix \(\mathcal{A}_{f}(G)\) of G, in which the ij-entry is equal to f(di,dj) if vivjE(G) and 0 otherwise. This paper attempts to unify the study of spectral properties for the weighted adjacency matrix \(\mathcal{A}_{f}(G)\) of graphs with a degree-based edge-weight function f(x,y). Some lower and upper bounds of the largest weighted adjacency eigenvalue λ1 are given, and the corresponding extremal graphs are characterized. Bounds of the energy \(\mathcal{E}_{f}(G)\) for the weighted adjacency matrix \(\mathcal{A}_{f}(G)\) are also obtained. By virtue of the unified method, this makes many earlier results become special cases of our results.

基于度的边权函数图的加权邻接矩阵的谱性质和能量
设G为图,di表示顶点vi在G中的度数,设f(x,y)为实对称函数。这样就可以得到一个边加权图,对于G的每条边vivj, vivj的权值由f(di,dj)赋值。因此,我们有一个G的加权邻接矩阵\(\mathcal{A}_{f}(G)\),其中如果vivj∈E(G),则ij项等于f(di,dj),否则等于0。本文试图用基于度的边权函数f(x,y)统一图的加权邻接矩阵\(\mathcal{A}_{f}(G)\)的谱性质研究。给出了最大加权邻接特征值λ1的下界和上界,并对相应的极值图进行了刻画。得到了加权邻接矩阵\(\mathcal{A}_{f}(G)\)的能量界\(\mathcal{E}_{f}(G)\)。由于采用统一的方法,这使得许多以前的结果成为我们结果的特例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信