Characterizations of VMO and CMO Spaces in the Bessel Setting

IF 0.8 3区 数学 Q2 MATHEMATICS
Qing Dong Guo, Jorge J. Betancor, Dong Yong Yang
{"title":"Characterizations of VMO and CMO Spaces in the Bessel Setting","authors":"Qing Dong Guo,&nbsp;Jorge J. Betancor,&nbsp;Dong Yong Yang","doi":"10.1007/s10114-024-3342-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let λ &gt; 0 and <span>\\(\\Delta_{\\lambda} := -{{d^2} \\over {dx^{2}}} - {{2\\lambda} \\over x} {{d} \\over {dx}}\\)</span> be the Bessel operator on ℝ<sub>+</sub>:= (0, ∞). In this paper, the authors introduce and characterize the space VMO(ℝ<sub>+</sub>, <i>dm</i><sub>λ</sub>) in terms of the Hankel translation, the Hankel convolution and a John–Nirenberg inequality, and obtain a sufficient condition of Fefferman–Stein type for functions <i>f</i> ∈ VMO(ℝ<sub>+</sub>, <i>dm</i><sub>λ</sub>) using <span>\\({\\tilde R}_{{\\Delta}_\\lambda}\\)</span>, the adjoint of the Riesz transform <span>\\({R}_{{\\Delta}_\\lambda}\\)</span>. Furthermore, we obtain the characterization of CMO(ℝ<sub>+</sub>, <i>dm</i><sub>λ</sub>) in terms of the John–Nirenberg inequality which is new even for the classical CMO(ℝ<sup><i>n</i></sup>) and a sufficient condition of Fefferman–Stein type for functions <i>f</i> ∈ CMO(ℝ<sub>+</sub>, <i>dm</i><sub>λ</sub>).</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 12","pages":"3055 - 3078"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-3342-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let λ > 0 and \(\Delta_{\lambda} := -{{d^2} \over {dx^{2}}} - {{2\lambda} \over x} {{d} \over {dx}}\) be the Bessel operator on ℝ+:= (0, ∞). In this paper, the authors introduce and characterize the space VMO(ℝ+, dmλ) in terms of the Hankel translation, the Hankel convolution and a John–Nirenberg inequality, and obtain a sufficient condition of Fefferman–Stein type for functions f ∈ VMO(ℝ+, dmλ) using \({\tilde R}_{{\Delta}_\lambda}\), the adjoint of the Riesz transform \({R}_{{\Delta}_\lambda}\). Furthermore, we obtain the characterization of CMO(ℝ+, dmλ) in terms of the John–Nirenberg inequality which is new even for the classical CMO(ℝn) and a sufficient condition of Fefferman–Stein type for functions f ∈ CMO(ℝ+, dmλ).

贝塞尔环境下VMO和CMO空间的表征
设λ &gt;0和\(\Delta_{\lambda} := -{{d^2} \over {dx^{2}}} - {{2\lambda} \over x} {{d} \over {dx}}\)是在(0,∞)上的贝塞尔算子。本文用Hankel平移、Hankel卷积和John-Nirenberg不等式引入了空间VMO(v +, mλ)并对其进行了刻画,利用Riesz变换的伴随函数\({R}_{{\Delta}_\lambda}\)\({\tilde R}_{{\Delta}_\lambda}\)得到了函数f∈VMO(v +, mλ)的Fefferman-Stein型的一个充分条件。进一步,我们得到了CMO(g +, mλ)在经典的CMO(g +, mλ)中新的John-Nirenberg不等式的刻画,以及函数f∈CMO(g +, mλ)的Fefferman-Stein型的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信