On Closed Six-Manifolds Admitting Riemannian Metrics with Positive Sectional Curvature and Non-Abelian Symmetry

IF 0.8 3区 数学 Q2 MATHEMATICS
Yu Hang Liu
{"title":"On Closed Six-Manifolds Admitting Riemannian Metrics with Positive Sectional Curvature and Non-Abelian Symmetry","authors":"Yu Hang Liu","doi":"10.1007/s10114-024-1418-9","DOIUrl":null,"url":null,"abstract":"<div><p>We study the topology of closed, simply-connected, 6-dimensional Riemannian manifolds of positive sectional curvature which admit isometric actions by SU(2) or SO(3). We show that their Euler characteristic agrees with that of the known examples, i.e., <i>S</i><sup>6</sup>, <span>\\(\\mathbb{CP}^{3}\\)</span>, the Wallach space SU(3)/<i>T</i><sup>2</sup> and the biquotient SU(3)//<i>T</i><sup>2</sup>. We also classify, up to equivariant diffeomorphism, certain actions without exceptional orbits and show that there are strong restrictions on the exceptional strata.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 12","pages":"3003 - 3026"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-1418-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the topology of closed, simply-connected, 6-dimensional Riemannian manifolds of positive sectional curvature which admit isometric actions by SU(2) or SO(3). We show that their Euler characteristic agrees with that of the known examples, i.e., S6, \(\mathbb{CP}^{3}\), the Wallach space SU(3)/T2 and the biquotient SU(3)//T2. We also classify, up to equivariant diffeomorphism, certain actions without exceptional orbits and show that there are strong restrictions on the exceptional strata.

具有正截面曲率和非阿贝尔对称的黎曼度量的闭六流形
我们研究了允许SU(2)或SO(3)等距作用的闭的、单连通的6维正截面曲率黎曼流形的拓扑结构。我们证明了它们的欧拉特征与已知例子S6、\(\mathbb{CP}^{3}\)、Wallach空间SU(3)/T2和双商SU(3)//T2的欧拉特征一致。我们还对一些没有异常轨道的作用进行了分类,直到等变微分同胚,并指出异常地层有很强的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信