The Life Span of Classical Solutions to Nonlinear Wave Equations with Weighted Terms in Three Space Dimensions

IF 0.8 3区 数学 Q2 MATHEMATICS
Hu Sheng Wang, Fan Lü
{"title":"The Life Span of Classical Solutions to Nonlinear Wave Equations with Weighted Terms in Three Space Dimensions","authors":"Hu Sheng Wang,&nbsp;Fan Lü","doi":"10.1007/s10114-024-2600-9","DOIUrl":null,"url":null,"abstract":"<div><p>The paper considers the Cauchy problem with small initial values for semilinear wave equations with weighted nonlinear terms. Similar to Strauss exponent <i>p</i><sub>0</sub>(<i>n</i>) which is the positive root of the quadratic equation <span>\\(1+{1\\over 2}(n+1)p-{1\\over 2}(n-1)p^{2}=0\\)</span>, we get smaller critical exponents <i>p</i><sub><i>m</i></sub>(<i>n</i>),<i>p</i><span>\n <sup>*</sup><sub><i>m</i></sub>\n \n </span>(<i>n</i>) and have global existence in time when <i>p</i>&gt;<i>p</i><sub><i>m</i></sub>(<i>n</i>) or <i>p</i>&gt;<i>p</i><span>\n <sup>*</sup><sub><i>m</i></sub>\n \n </span>(<i>n</i>). In addition, for the blow-up case, the introduction of the spacial weight shows the optimality of new upper and lower bound.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 12","pages":"2984 - 3002"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2600-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The paper considers the Cauchy problem with small initial values for semilinear wave equations with weighted nonlinear terms. Similar to Strauss exponent p0(n) which is the positive root of the quadratic equation \(1+{1\over 2}(n+1)p-{1\over 2}(n-1)p^{2}=0\), we get smaller critical exponents pm(n),p *m (n) and have global existence in time when p>pm(n) or p>p *m (n). In addition, for the blow-up case, the introduction of the spacial weight shows the optimality of new upper and lower bound.

三维带加权项非线性波动方程经典解的寿命
研究一类带加权非线性项的半线性波动方程的小初值柯西问题。与二次方程\(1+{1\over 2}(n+1)p-{1\over 2}(n-1)p^{2}=0\)的正根Strauss指数p0(n)类似,当p&gt;pm(n)或p&gt;p *m (n)时,我们得到了更小的临界指数pm(n),p *m (n),并且在时间上具有全局存在性。此外,对于blow up情况,引入空间权值显示了新的上界和下界的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信